精英家教網(wǎng)如圖,A、B兩點(diǎn)被池塘隔開(kāi),在AB外任選一點(diǎn)C,連接AC、BC分別取其三等分點(diǎn)M、N量得MN=28m.則AB的長(zhǎng)為
 
m.
分析:由題可知,易證△CMN∽△CAB,根據(jù)對(duì)應(yīng)邊成比例即可求得AB的長(zhǎng).
解答:解:因?yàn)镸、N分別為AC,BC的三等分點(diǎn).
∴設(shè)MC=x,則AC=3x,
又∵△CMN∽△CAB,
MN
AB
=
MC
AC

28
AB
=
x
3x

解得:AB=84m.
點(diǎn)評(píng):本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,A、B兩點(diǎn)被池塘隔開(kāi),為測(cè)量A、B兩點(diǎn)的距離,某數(shù)學(xué)興趣學(xué)習(xí)小組根據(jù)所學(xué)知識(shí)設(shè)計(jì)了如下系列測(cè)量方案:
方案一:如圖a,在AB外選一點(diǎn)C,連接AC和BC,并分別找出AC和BC的中點(diǎn)M、N,如果測(cè)得MN=20m,那么AB=2×20m=40m.

方案二:如圖b,分別延長(zhǎng)AC、BC,使CD=AC,CE=BC,連接DE,如果測(cè)得DE=Xm,則AB=Xm.
請(qǐng)解答下列問(wèn)題:
(1)某同學(xué)看了測(cè)量方案后知道方案二應(yīng)用的是“三角形全等”設(shè)計(jì)的,設(shè)計(jì)方案可行.請(qǐng)寫(xiě)出方案一應(yīng)用的數(shù)學(xué)知識(shí)方法并評(píng)價(jià)其可行性.
(2)請(qǐng)用上面類(lèi)似的方法,在圖c中畫(huà)出圖形,敘述你的新測(cè)量方案方案三,并寫(xiě)出你所應(yīng)用的數(shù)學(xué)知識(shí)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,A、B兩點(diǎn)被池塘隔開(kāi),在AB外取一點(diǎn)C,連接AC、BC,在AC上取點(diǎn)M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,則AB的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B兩點(diǎn)被池塘隔開(kāi),在AB外任選一點(diǎn)C,連接AC,BC,分別取其三等分點(diǎn)M,N,量得MN=30m,若CN<NB,CM<MA,則AB的長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B兩點(diǎn)被池塘隔開(kāi),在A,B外選一點(diǎn)C,連接AC和BC,并分別找出AC和BC的中點(diǎn)M,N,如果測(cè)得MN=20m,那么A,B兩點(diǎn)間的距離是多少?( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案