A. | S1>S2 | B. | S1<S2 | C. | S1=S2 | D. | 無(wú)法確定 |
分析 根據(jù)勾股定理求出AC,求出AC邊上的高BM,根據(jù)相似三角形的性質(zhì)得出方程,求出方程的解,即可求得S1=DEFG的面積,如圖2,根據(jù)相似三角形的性質(zhì)列方程求得DE=127,于是得到S2=(127)2>(6037)2,即可得到結(jié)論.
解答 解:如圖1,設(shè)正方形DEFG的邊長(zhǎng)是x,
∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,
∴由勾股定理得:AC=5,
過(guò)B作BM⊥AC于M,交DE于N,
由三角形面積公式得:12BC×AB=12AC×BM,
∵AB=3,AC=5,BC=4,
∴BM=2.4,
∵四邊形DEFG是正方形,
∴DG=GF=EF=DE=MN=x,DE∥AC,
∴△BDE∽△ABC,
∴DEAC=BNBM,
∴x5=2.4−x2.4,
x=6037,
即正方形DEFG的邊長(zhǎng)是6037;
∴S1=(6037)2,
如圖2,∵DE∥BC,
∴△ADE∽△ABC,
∴DEBC=ADAB,即DE4=3−DE3,
∴DE=127,
∴S2=(127)2>(6037)2,
∴S1<S2,
故選B.
點(diǎn)評(píng) 本題考查了相似三角形的性質(zhì)和判定,三角形面積公式,正方形的性質(zhì)的應(yīng)用,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+x+1 | B. | x2-6x+9 | C. | x2-1 | D. | x2+2x-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | 3 | D. | -3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com