【題目】如圖1,在菱形ABCD中,AC=2,∠ABC=60°,AC,BD相交于點O.
(1)如圖1,AH⊥BC,求證:△ABH≌△ACH;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G.
①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.
【答案】(1)見解析;
(2)①△AEF是等邊三角形,理由見解析;②
【解析】
試題分析:(1)由菱形的性質(zhì)得到AB=AC,從而用HL判定出△ABH≌△ACH.
(2)由菱形的性質(zhì)得到AB=AC,結(jié)合∠ABC=60°得到AC=AD,再判斷出△BAC≌△CAF,△AEB≌△EGC即可;
試題解析:(1)∵四邊形ABCD是菱形,且AC=2,∴AB=BC=2,
∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=BC=AC=2,
∵AH⊥BC,∴∠ABH=∠ACH=90°,在Rt△ABH和Rt△ACH中,,
∴△ABH≌△ACH(HL),
(2)①△AEF是等邊三角形,
理由:
∵四邊形ABCD是菱形,且∠ABC=60°,∴△ABC和△ACD是等邊三角形,∴∠ABC=∠BAC=∠ACD=60°,
∵∠EAF=60°,∴∠EAC+∠BAE=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,又∵AB=AC,
∴△BAC≌△CAF,∴AE=AF,又∵∠EAF=60°,∴△AEF是等邊三角形,
②∵△AEF和△ABC是等邊三角形,∴∠AEF=∠ABC=∠ACB=60°,
∴∠AEB+∠BAE=∠AEB+∠GEC=120°,∴∠BAE=∠GEC,∴△AEB≌△EGC,
∴,又∵EC=BC=AB,∴CG=BE=BC=.
科目:初中數(shù)學 來源: 題型:
【題目】某村引進甲乙兩種水稻良種,各選6塊條件相同的實驗田,同時播種并核定畝產(chǎn),結(jié)果甲、乙兩種水稻的平均產(chǎn)量均為550kg/畝,方差分別為S甲2=141.7,S乙2=433.3,則產(chǎn)量穩(wěn)定,適合推廣的品種為( )
A.甲、乙均可
B.甲
C.乙
D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七年級下冊期中測試,小明的語文、數(shù)學、英語、政治、歷史五科均為百分制,且分數(shù)分別為90、85、75、90、95.若把該五科成績轉(zhuǎn)化成中考賦分模式,語文總分120分、數(shù)學總分120分、英語總分120分,政治總分60分、歷史總分60分,則他轉(zhuǎn)化后的五科總分為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com