【題目】如圖,AB為⊙O的直徑,點(diǎn)P為AB延長線上的一點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是___________.(寫出所有正確結(jié)論的序號(hào))
①AM平分∠CAB;
②AM2=ACAB;
③若AB=4,∠APE=30°,則的長為;
④若AC=3,BD=1,則有CM=DM=.
【答案】①②④
【解析】
連接OM,由切線的性質(zhì)可得OM⊥PC,繼而得OM∥AC,再根據(jù)平行線的性質(zhì)以及等邊對(duì)等角即可求得∠CAM=∠OAM,由此可判斷①;通過證明△ACM∽△AMB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;求出∠MOP=60°,利用弧長公式求得的長可判斷③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,繼而可得PB=OB=AO,PD=DM=CM,進(jìn)而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的長,可得CM=DM=DP=,由此可判斷④.
連接OM,
∵PE為⊙O的切線,
∴OM⊥PC,
∵AC⊥PC,
∴OM∥AC,
∴∠CAM=∠AMO,
∵OA=OM,
∠OAM=∠AMO,
∴∠CAM=∠OAM,即AM平分∠CAB,故①正確;
∵AB為⊙O的直徑,
∴∠AMB=90°,
∵∠CAM=∠MAB,∠ACM=∠AMB,
∴△ACM∽△AMB,
∴,
∴AM2=ACAB,故②正確;
∵∠APE=30°,
∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,
∵AB=4,
∴OB=2,
∴的長為,故③錯(cuò)誤;
∵BD⊥PC,AC⊥PC,OM⊥PC,
∴BD∥AC//OM,
∴△PBD∽△PAC,
∴,
∴PB=PA,
又∵AO=BO,AO+BO=AB,AB+PB=PA,
∴PB=OB=AO,
又∵BD∥AC//OM,
∴PD=DM=CM,
∴OM=2BD=2,
在Rt△PBD中,PB=BO=OM=2
∴PD==,
∴CM=DM=DP=,故④正確,
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)若一個(gè)四邊形恰好關(guān)于其中一條對(duì)角線所在的直線對(duì)稱,則我們將這個(gè)四邊形叫做鏡面四邊形.
(理解)(1)下列說法是否正確(對(duì)的打√,錯(cuò)的打×)
①平行四邊形是一個(gè)鏡面四邊形
②鏡面四邊形的面積等于對(duì)角線積的一半.
(2)如圖(1),請(qǐng)你在4×4的網(wǎng)格(每個(gè)小正方形的邊長為1)中畫出一個(gè)鏡面四邊形,使它圖(1)的頂點(diǎn)在格點(diǎn)上,且有一邊長為.
(應(yīng)用)(3)如圖(2),已知鏡面四邊形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一點(diǎn),AE⊥BP的延長線上取一點(diǎn)F,使EF=BE,連接AF,作∠FAD的平分線AG交BF于G,CM⊥BF于M,連接CG.
①求∠EAG的度數(shù).
②比較BM與EG的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m,分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用、表示.
該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為______;
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,.
(1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經(jīng)過點(diǎn);③與邊相切.
(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在x軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點(diǎn)D,且反比例函數(shù)y=交BC于點(diǎn)E,AD=3.
(1)求D點(diǎn)的坐標(biāo)及反比例函數(shù)的關(guān)系式;
(2)若矩形的面積是24,請(qǐng)寫出△CDE的面積(不需要寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天門山索道是世界最長的高山客運(yùn)索道,位于張家界天門山景區(qū).在一次檢修維護(hù)中,檢修人員從索道A處開始,沿A﹣B﹣C路線對(duì)索道進(jìn)行檢修維護(hù).如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com