【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫出△A1B1Cl和△A2B2C2

(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).

【答案】(1)作圖見(jiàn)解析;(2)P1(﹣b,a),P2(﹣b+6,a+2).

【解析】

試題分析:(1)直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合平移的性質(zhì)分別得出符合題意的圖形;

(2)△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,則對(duì)應(yīng)點(diǎn)橫坐標(biāo)變?yōu)樵v坐標(biāo)的相反數(shù),縱坐標(biāo)變?yōu)樵瓉?lái)的橫坐標(biāo),再利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置.

試題解析:(1)如圖所示:△A1B1Cl和△A2B2C2,即為所求;

(2)由題意可得:P1(﹣b,a),P2(﹣b+6,a+2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線與x軸交于點(diǎn)A(﹣5,0)、B(﹣1,0),與y軸交于點(diǎn)C(0,﹣5),點(diǎn)P是拋物線上的動(dòng)點(diǎn),連接PA、PC,PC與x軸交于點(diǎn)D.

(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

(2)若點(diǎn)P的坐標(biāo)為(﹣2,3),請(qǐng)求出此時(shí)△APC的面積;

(3)過(guò)點(diǎn)P作y軸的平行線交x軸于點(diǎn)H,交直線AC于點(diǎn)E,如圖2.

①若∠APE=∠CPE,求證:;

②△APE能否為等腰三角形?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了抓住保國(guó)寺建寺1000年的商機(jī),某商店決定購(gòu)進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購(gòu)進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這100件紀(jì)念品的資金不少于7500元,但不超過(guò)7650元,那么該商店共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校九年級(jí)(1)班所有學(xué)生參加2015年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)九年級(jí)(1)班參加體育測(cè)試的學(xué)生有人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是 , 等級(jí)C對(duì)應(yīng)的圓心角的度數(shù)為;
(4)若該校九年級(jí)學(xué)生共有550人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解方程x26x+40時(shí),配方后得的方程為(  )

A.x+325B.x32=﹣13

C.x325D.x3213

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(-12)-5+(-14)-(-39)
(2)
(3)-22
(4) ×(-15)(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,則四邊形ACEB的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=16cm,CB=12cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由.
(3)若C在線段AB的延長(zhǎng)線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,不要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明:
已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,

證明:過(guò)點(diǎn)C作CF∥AB.
∵AB∥CF(已知),
∴∠B=).
∵AB∥DE,CF∥AB( 已知 ),
∴CF∥DE (
∴∠2+=180° (
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180° ().

查看答案和解析>>

同步練習(xí)冊(cè)答案