【題目】如圖1,△ABC是等腰直角三角形,∠A90°,BC4cm,點P在△ABC的邊上沿路徑B→A→C移動,過點PPDBC于點D,設(shè)BDxcm,△BDP的面積為ycm2(當(dāng)點P與點B或點C重合時,y的值為0).

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小東的探究過程,請補充完整:

1)自變量x的取值范圍是______

2)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

y/cm2

0

m

2

n

0

請直接寫出m_____,n_____

3)如圖2,在平面直角坐標(biāo)系xOy中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△BDP的面積為1cm2時,BD的長度約為_____cm.(數(shù)值保留一位小數(shù))

【答案】10≤x≤4;(2,;(3)見解析;(41.43.4

【解析】

1)由于點D在線段BC上運動,則x范圍可知;

2)根據(jù)題意得畫圖測量可得對應(yīng)數(shù)據(jù);

3)根據(jù)已知數(shù)據(jù)描點連線畫圖即可;

4)當(dāng)△BDP的面積為1cm2時,相對于y1,則求兩個函數(shù)圖象交點即可.

解:(1)由點D的運動路徑可知BD的取值范圍

故答案為:0≤x≤4

2)通過取點、畫圖、測量,可得m,n

故答案為:,

3)根據(jù)已知數(shù)據(jù)畫出圖象如圖

4)當(dāng)△BDP的面積為1cm2時,對應(yīng)的x相對于直線y1與(3)中圖象交點得橫坐標(biāo),畫圖測量即可.

故答案為:1.43.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰直角三角形ABC中,O是斜邊AC的中點,P是斜邊AC上的一個動點,DBC上的一點,且PB=PD,DEAC,垂足為點E,求證:PE=BO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于軸,一頂點在軸上,從內(nèi)到外,它們的邊長依次為24,6,8,…,頂點依次用表示,其中軸、底邊、…均相距一個單位,則頂點的坐標(biāo)是__________,的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CACB,∠ACB90°,AB2,點DAB的中點,以點D為圓心作圓,半圓恰好經(jīng)過△ABC的直角頂點C,以點D為頂點,作∠EDF90°,與半圓交于點E、F,則圖中陰影部分的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C、D兩點,點E為⊙G上一動點,CFAEF.當(dāng)點E從點B出發(fā)順時針運動到點D時,點F所經(jīng)過的路徑長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,,點上,,點的中點,點為弧上的動點,的交點為

1)當(dāng)四邊形的面積最大時,求;

2)求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書.已知甲圖書每本價格是乙圖書每本價格的2.5倍,用800元單獨購買甲圖書比用800元單獨購買乙圖書要少24本.求甲、乙兩種圖書每本價格分別為多少元?我們設(shè)乙圖書每本價格為x元,則可得方程( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC是⊙O的一條弦,D為弧BC的中點,作DEAC,垂足為AC的延長線上的點E,連接DA,DB

(1)求證:DE為⊙O的切線;

(2)試探究線段AB,BD,CE之間的數(shù)量關(guān)系,并說明理由;

(3)延長EDAB的延長線于F,若AD=DFDE=,求⊙O的半徑

查看答案和解析>>

同步練習(xí)冊答案