【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且

1)求一次函數(shù)的表達(dá)式;

2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)反比例函數(shù)的圖象記為曲線,將向右平移3個(gè)單位長(zhǎng)度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

【答案】1)反比例函數(shù)解析式為;一次函數(shù)的解析式為y=2x-5;(2)存在,,,;(327

【解析】

1)把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,求出a,根據(jù)勾股定理求出OA,得到OB的長(zhǎng),求出點(diǎn)B的坐標(biāo),利用待定系數(shù)法求出一次函數(shù)解析式;
2)根據(jù)勾股定理求出AB,分ABAC、BCAB兩種情況,根據(jù)勾股定理列方程計(jì)算,得到答案;
3)分別把x1x4代入反比例函數(shù)解析式求出函數(shù)值,求出平行四邊形EFNM的面積,求出C1平移至C2處所掃過的面積.

解:(1)∵點(diǎn)A4,3)在反比例函數(shù)的圖象上,

a=4×3=12

∴反比例函數(shù)解析式為;

,OA=OB,點(diǎn)By軸負(fù)半軸上,

∴點(diǎn)B0,-5).

把點(diǎn)A4,3)、B0,-5)代入y=kx+b中,

得:,解得:,

∴一次函數(shù)的解析式為y=2x-5

2)存在,

∵點(diǎn)A4,3),點(diǎn)B0,-5

設(shè)點(diǎn)C的坐標(biāo)為(m0),

①△ABC為等腰三角形,

當(dāng)時(shí),

,

C的坐標(biāo)為

②當(dāng)時(shí),

,

C的坐標(biāo)為

綜上所述:,,

3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為4,點(diǎn)MN分別對(duì)應(yīng)點(diǎn)E、F,如圖所示.

x1,則y12,

E1,12);

x4,則y3,

F4,3),

EMFN,且EMFN

∴四邊形EMNF為平行四邊形,

SEMyEyF)=123)=27

C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.
故答案為:27

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點(diǎn),其中A(1,2)

(1)求這兩個(gè)函數(shù)解析式;

(2)在y軸上求作一點(diǎn)P,使PA+PB的值最小,并直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為(-1,2)、(1,1).拋物線y=ax2+bx+ca≠0)與x軸交于CD兩點(diǎn),點(diǎn)C在點(diǎn)D左側(cè),當(dāng)頂點(diǎn)在線段AB上移動(dòng)時(shí),點(diǎn)C橫坐標(biāo)的最小值為-2.在拋物線移動(dòng)過程中,a-b+c的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東日照已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:

①拋物線過原點(diǎn);

4a+b+c=0;

a﹣b+c<0;

④拋物線的頂點(diǎn)坐標(biāo)為(2,b);

⑤當(dāng)x<2時(shí),yx增大而增大.

其中結(jié)論正確的是(

A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67tan48°≈1.11

A.17.0B.21.9C.23.3D.33.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊長(zhǎng)為,OAx軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)Dx軸的負(fù)半軸上,且滿足∠BDO15°,直線ykx+b經(jīng)過B、D兩點(diǎn),則bk_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線y交于E,F兩點(diǎn),若AB2EF,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y1ax2bxcab,c為常數(shù))的圖象如圖所示,若y1y22,則下列關(guān)于函數(shù)y2的圖象與性質(zhì)描述正確的是:( )

A.函數(shù)y2的圖象開口向上

B.函數(shù)y2的圖象與x軸沒有公共點(diǎn)

C.當(dāng)x2時(shí),y2x的增大而減小

D.當(dāng)x1時(shí),函數(shù)y2的值小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD中,EBC邊上一點(diǎn),連接AE,作AE的垂直平分線交ABG,交CDF,若BG2BE,則DFCF的長(zhǎng)為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案