【題目】《幾何原本》是一部集前人思想和歐幾里得個人創(chuàng)造性于一體的不朽之作,它建立了一套從公理、定義出發(fā),論證命題得到定理的幾何學(xué)論證方法,形成了一個嚴密的邏輯體系﹣﹣﹣幾何學(xué).以下是《幾何原本》第一卷中的命題6,請完成它的證明過程.
命題6:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
已知: .
求證: .
證明:若AB≠AC,其中必有一個較大,不妨設(shè)AB>AC,在AB上截取BD=AC,
連接DC.
∵ ,
,
,
∴△ACB≌△DBC
∴∠BDC=∠CAB .
又∠BDC>∠CAB .
∴∠BDC與∠CAB即等于又大于,顯然是矛盾的.
∴假設(shè)不成立,即AB=AC.
【答案】:△ABC中,∠B=∠C;AB=AC;BD=CA,∠B=∠ACB,BC=CB;(SAS);(全等三角形的對應(yīng)角相等);(三角形外角性質(zhì)).
【解析】
運用反證法進行證明,反證法的一般步驟是:①假設(shè)命題的結(jié)論不成立;②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;③由矛盾判定假設(shè)不正確,從而肯定原命題的結(jié)論正確.
解:已知:△ABC中,∠B=∠C.
求證:AB=AC.
證明:若AB≠AC,其中必有一個較大,不妨設(shè)AB>AC,在AB上截取BD=AC,
連接DC.
∵BD=CA,
∠B=∠ACB,
BC=CB,
∴△ACB≌△DBC(SAS)
∴∠BDC=∠CAB(全等三角形的對應(yīng)角相等).
又∠BDC>∠CAB(三角形外角性質(zhì)).
∴∠BDC與∠CAB即等于又大于,顯然是矛盾的.
∴假設(shè)不成立,即AB=AC.
故答案為:△ABC中,∠B=∠C;AB=AC;BD=CA,∠B=∠ACB,BC=CB;(SAS);(全等三角形的對應(yīng)角相等);(三角形外角性質(zhì)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=4,BD=3,求△ADE的周長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N,動點P在線段BA上以每秒cm的速度由點B向點A運動.同時,動點Q在線段AC上由點N向點C運動,且始終保持MQ⊥MP.一個點到終點時兩個點同時停止運動,設(shè)運動的時間為t秒(t>0).
(1)求證:△PBM∽△QNM.
(2)若∠ABC=60°,AB=4cm,
①求動點Q的運動速度;
②設(shè)△APQ的面積為S(cm2),求S與t的等量關(guān)系式(不必寫出t的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD.BC∥AD.
(1)求證:△ABC≌△CDA;
(2)△ABC關(guān)于對角線AC的對稱圖形為△AEC,EC、AD交于點F,判斷△ACF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為等腰三角形,頂點的坐標(biāo),底邊在軸上.將繞點按順時針方向旋轉(zhuǎn)一定角度后得,點的對應(yīng)點在軸上,則點的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時,是否成立?若成立,請給出證明;若不成立,請說明理由;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時,延長交于,交于.
①求證:;
②當(dāng),時,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com