【答案】
分析:(1)二次函數(shù)y=ax
2+bx的頂點(diǎn)在已知二次函數(shù)拋物線的對(duì)稱軸上,可知兩個(gè)函數(shù)對(duì)稱軸相等,因此先根據(jù)已知函數(shù)求出對(duì)稱軸. y=x
2-2x-1=(x-1)
2-2,所以頂點(diǎn)A的坐標(biāo)為(1,-2)對(duì)稱軸為x=1,
所以二次函數(shù)y=ax
2+bx關(guān)于x=1對(duì)稱,且函數(shù)與x軸的交點(diǎn)分別是原點(diǎn)和C點(diǎn),
所以點(diǎn)C和點(diǎn)O關(guān)于直線l對(duì)稱,所以點(diǎn)C的坐標(biāo)為(2,0);
(2)因?yàn)樗倪呅蜛OBC是菱形,根據(jù)菱形性質(zhì),可以得出點(diǎn)O和點(diǎn)C關(guān)于直線AB對(duì)稱,點(diǎn)B和點(diǎn)A關(guān)于直線OC對(duì)稱,因此,可求出點(diǎn)B的坐標(biāo),點(diǎn)B的坐標(biāo)為(1,2),
二次函數(shù)y=ax
2+bx的圖象經(jīng)過點(diǎn)B(1,2),C(2,0),將B,C代入解析式,可得,
,
解得
,所以二次函數(shù)y=ax
2+bx的關(guān)系式為y=-2x
2+4x.
解答:解:(1)∵y=x
2-2x-1=(x-1)
2-2,
∴頂點(diǎn)A的坐標(biāo)為(1,-2).
∵二次函數(shù)y=ax
2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x
2-2x-1的圖象的對(duì)稱軸上.
∴二次函數(shù)y=ax
2+bx的對(duì)稱軸為:直線x=1,
∴點(diǎn)C和點(diǎn)O關(guān)于直線x=1對(duì)稱,
∴點(diǎn)C的坐標(biāo)為(2,0).
(2)因?yàn)樗倪呅蜛OBC是菱形,所以點(diǎn)B和點(diǎn)A關(guān)于直線OC對(duì)稱,
因此,點(diǎn)B的坐標(biāo)為(1,2).
因?yàn)槎魏瘮?shù)y=ax
2+bx的圖象經(jīng)過點(diǎn)B(1,2),C(2,0),
所以
,
解得
,
所以二次函數(shù)y=ax
2+bx的關(guān)系式為y=-2x
2+4x.
點(diǎn)評(píng):本題主要考查利用二次函數(shù)和菱形的對(duì)稱性求有關(guān)的點(diǎn),再用待定系數(shù)法求二次函數(shù)解析式,是難度中等的考題.