提出問題:小明是個愛思考的學生,在學習了三角函數(shù)后小明發(fā)現(xiàn):
sin90°=1,,90°是45°的兩倍,但三角函數(shù)值卻是倍;
sin30°=______,sin60°=______
【答案】分析:把30°,60°的正弦值代入并計算即可填空;
解決問題:根據(jù)題目信息,利用角2α與α表示△ABC的面積,S△ABC=2S△ABD,然后整理,再根據(jù)余弦定義,余弦=鄰邊:斜邊,進行代換即可證明;
推廣應用:證明思路與解決問題相同,利用角α與β表示△ABD的面積,S△ABD=S△ABC+S△ACD,然后整理,再根據(jù)余弦定義,余弦=鄰邊:斜邊,進行代換即可證明,把75°分成30°與45°的和,然后把特殊角的三角函數(shù)值代入計算即可.
解答:提出問題:
sin30°=,sin60°=,60°是30°的兩倍,但三角函數(shù)值卻是倍;(3分)

解決問題:如圖2,在△ABC中,AB=AC,AD⊥BC于D,設∠BAD=α.
求證:sin2α=2sinαcosα,
證明:根據(jù)題目信息,S△ABC=AB•ACsin2α,S△ABD=AB•ADsinα,
∵AB=AC,AD⊥BC于D,
∴S△ABC=2S△ABD,
AB•ACsin2α=2×AB•ADsinα,
即sin2α=2sinα×,
在Rt△ADC中,=cosα,
∴sin2α=2sinαcosα;(3分)

推廣應用:結論:sin(α+β)=sinαcosβ+cosαsinβ,(1分)
證明:S△ABD=AB•ADsin(α+β),S△ABC=AB•ACsinα,S△ACD=AC•ADsinβ,
∵S△ABD=S△ABC+S△ACD,
AB•ADsin(α+β)=AB•ACsinα+AC•ADsinβ,
即sin(α+β)=sinα×+sinβ×,
在Rt△ACD中,=cosβ,
在Rt△ABC中,=cosα,
∴sin(α+β)=sinαcosβ+cosαsinβ;
并利用上述關系求出sin75°的值(保留根號).
sin75°=sin30°cos45°+cos30°sin45°=×+×=.(1分)
點評:本題通過題目提供信息考查了解直角三角形,特殊角的三角函數(shù)值,讀懂題目信息并根據(jù)信息表示出三角形的面積是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

數(shù)學家們通過長期的研究,得到了關于“等周問題”的重要結論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎上證明事實2:“等周長n邊形的面積,當邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

提出問題:小明是個愛思考的學生,在學習了三角函數(shù)后小明發(fā)現(xiàn):
sin90°=1,sin45°=
2
2
,90°是45°的兩倍,但三角函數(shù)值卻是
2
倍;
sin30°=
 
,sin60°=
 
,60°是30°的兩倍,但三角函數(shù)值卻是
 
倍,
考慮到cos45°,cos30°的三角函數(shù)值,估計sin2α=2sinαcosα,代入檢驗發(fā)現(xiàn)以上兩組角度都符合.
解決問題:那么如何證明sin2α=2sinαcosα呢?
小明思考再三,發(fā)現(xiàn)在△ABC中(圖2),高AD=ABsinB,可得S△ABC=
1
2
BC•ABsinB
,
利用這個結論證明上述命題結論.聰明的你也能解決這個問題嗎?
如圖2,在△ABC中,AB=AC,AD⊥BC于D,設∠BAD=α,求證:sin2α=2sinαcosα.
推廣應用:解決了以上問題后,小明思考再三,終于發(fā)現(xiàn)了sin(α+β)與sinα,cosα,sinβ,cosβ的關系,
你能結合圖3證明出自己所猜想的sin(α+β)與sinα,cosα,sinβ,cosβ的關系嗎?
并利用上述關系求出sin75°的值(保留根號).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

提出問題:小明是個愛思考的學生,在學習了三角函數(shù)后小明發(fā)現(xiàn):
sin90°=1,數(shù)學公式,90°是45°的兩倍,但三角函數(shù)值卻是數(shù)學公式倍;
sin30°=________,sin60°=________,60°是30°的兩倍,但三角函數(shù)值卻是________倍,
考慮到cos45°,cos30°的三角函數(shù)值,估計sin2α=2sinαcosα,代入檢驗發(fā)現(xiàn)以上兩組角度都符合.
解決問題:那么如何證明sin2α=2sinαcosα呢?
小明思考再三,發(fā)現(xiàn)在△ABC中(圖2),高AD=ABsinB,可得數(shù)學公式,
利用這個結論證明上述命題結論.聰明的你也能解決這個問題嗎?
如圖2,在△ABC中,AB=AC,AD⊥BC于D,設∠BAD=α,求證:sin2α=2sinαcosα.
推廣應用:解決了以上問題后,小明思考再三,終于發(fā)現(xiàn)了sin(α+β)與sinα,cosα,sinβ,cosβ的關系,
你能結合圖3證明出自己所猜想的sin(α+β)與sinα,cosα,sinβ,cosβ的關系嗎?
并利用上述關系求出sin75°的值(保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年九年級(上)數(shù)學月考試卷(二)(英才班)(解析版) 題型:解答題

數(shù)學家們通過長期的研究,得到了關于“等周問題”的重要結論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎上證明事實2:“等周長n邊形的面積,當邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.

查看答案和解析>>

同步練習冊答案