對(duì)于拋物線,下列說法正確的是(   )
A.開口向下,頂點(diǎn)坐標(biāo)B.開口向上,頂點(diǎn)坐標(biāo)
C.開口向下,頂點(diǎn)坐標(biāo)D.開口向上,頂點(diǎn)坐標(biāo)
A
∵拋物線
∴a<0,∴開口向下,
∴頂點(diǎn)坐標(biāo)(5,3).
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn)。  
(1)求這個(gè)二次函數(shù)的解析式;
(2)過點(diǎn)C的直線y=kx+b與這個(gè)二次函數(shù)的圖象相交于點(diǎn)E(4,m),請(qǐng)求出△CBE的面積S的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.
(1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;
(2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;
(3)問小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

泰州新星電子科技公司積極應(yīng)對(duì)世界金融危機(jī),及時(shí)調(diào)整投資方向,瞄準(zhǔn)光伏產(chǎn)業(yè),建成了太陽能光伏電池生產(chǎn)線.由于新產(chǎn)品開發(fā)初期成本高,且市場(chǎng)占有率不高等因素的影響,產(chǎn)品投產(chǎn)上市一年來,公司經(jīng)歷了由初期的虧損到后來逐步盈利的過程(公司對(duì)經(jīng)營的盈虧情況每月最后一天結(jié)算1次).公司累積獲得的利潤y(萬元)與銷售時(shí)間第x(月)之間的函數(shù)關(guān)系式(即前x個(gè)月的利潤總和y與x之間的關(guān)系)對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上.該圖象從左至右,依次是線段OA、曲線AB和曲線BC,其中曲線AB為拋物線的一部分,點(diǎn)A為該拋物線的頂點(diǎn),曲線BC為另一拋物線的一部分,且點(diǎn)A,B,C的橫坐標(biāo)分別為4,10,12
(1)求該公司累積獲得的利潤y(萬元)與時(shí)間第x(月)之間的函數(shù)關(guān)系式;
(2)直接寫出第x個(gè)月所獲得S(萬元)與時(shí)間x(月)之間的函數(shù)關(guān)系式(不需要寫出計(jì)算過程);
(3)前12個(gè)月中,第幾個(gè)月該公司所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-x2-1的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)與函數(shù)的圖象大致如圖.若則自變量的取值范圍是( 。.
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A,B的坐標(biāo)分別為(1, 4)和(4, 4),拋物線的頂點(diǎn)在線段AB上運(yùn)動(dòng),與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為,則點(diǎn)D的橫坐標(biāo)最大值為(    )

A.-3           B.1              C.5               D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用長為18 m的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃.

(1)設(shè)矩形的一邊為(m),面積為(m2),求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)為何值時(shí),所圍苗圃的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某車的剎車距離y(m)與開始剎車時(shí)的速度x(m/s)之間滿足二次函數(shù)(x>0),若該車某次的剎車距離為5 m,則開始剎車時(shí)的速度為(   )
A.40 m/sB.20 m/s
C.10 m/sD.5 m/s

查看答案和解析>>

同步練習(xí)冊(cè)答案