有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書(shū)中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.
分析:首先確定式子
(  )
3
+
(  )
5
+
(  )
7
的取值范圍,再將不等式去分母,得出121.275<35•(  )+21•( 。+15•( 。122.22,利用除法運(yùn)算的性質(zhì)得出符合要求的值.
解答:解:由題意可知1.155<
(  )
3
+
(  )
5
+
(  )
7
<1.164.
∴121.275<35•( 。+21•(  )+15•( 。122.22.
由于(  )的數(shù)都是整數(shù),
∴35•(  )+21•( 。+15•( 。=122,而122被3除余2,122被5除余2,122被7除余3,
故三個(gè)括號(hào)內(nèi)由左到右依次填:1、2、3,即
1
3
+
2
5
+
3
7
=1.16.
點(diǎn)評(píng):此題主要考查了怎樣估計(jì)一元二次方程的近似值,通過(guò)閱讀材料獲取信息是近幾年中考中熱點(diǎn)問(wèn)題,已注意細(xì)心閱讀發(fā)現(xiàn)規(guī)律才能解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)邊長(zhǎng)都是整數(shù)的三角形周長(zhǎng)是15cm,則滿足條件的三角形有
7
7
種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省儀征市大儀中學(xué)七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

若一個(gè)三角形三邊都是整數(shù),且兩邊長(zhǎng)是2和3,則這個(gè)三角形第三邊可以是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省儀征市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:填空題

若一個(gè)三角形三邊都是整數(shù),且兩邊長(zhǎng)是2和3,則這個(gè)三角形第三邊可以是______.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《28.4 方程的近似解》2010年習(xí)題精選(解析版) 題型:解答題

有一個(gè)算式分子都是整數(shù),滿足≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書(shū)中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+,用3+代替x,得x=3+=3+.反復(fù)若干次用3+代替x,就得到x=形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把忽略不計(jì),例如,當(dāng)忽略x=3+中的時(shí),就得到x=3;當(dāng)忽略x=3+中的時(shí),就得到x=3+;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

同步練習(xí)冊(cè)答案