某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng).乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù).設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)).y、y分別與x之間的部分函數(shù)圖象如圖所示.

(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式.

(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵.

(3)如果6個(gè)小時(shí)后,甲班保持前6個(gè)小時(shí)的工作效率,乙班通過(guò)增加人數(shù),提高了工作效率,這樣繼續(xù)植樹(shù)2小時(shí),活動(dòng)結(jié)束.當(dāng)x=8時(shí),兩班之間植樹(shù)的總量相差20棵,求乙班增加人數(shù)后平均每小時(shí)植樹(shù)多少棵.

 

 

 

【答案】

解:(1)設(shè)y=k1x,把(6,120)代入,得k1=20,∴y=20x.

當(dāng)x=3時(shí),y=60.

設(shè)y=k2x+b,把(0,30),(3,60)代入,得b=30,

3k2+b=60.

解得k2=10,

b=30.

∴y=10x+30.                                      

(2)當(dāng)x=8時(shí),y=8×20=160,

y=8×10+30=110.

∵160+110=270>260,

∴當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能超過(guò)260棵.    

(3)設(shè)乙班增加人數(shù)后平均每小時(shí)植樹(shù)a棵.

當(dāng)乙班比甲班多植樹(shù)20棵時(shí),有6×10+30+2a-20×8=20.

解得a=45.

當(dāng)甲班比乙班多植樹(shù)20棵時(shí),有20×8-(6×10+30+2a)=20.

解得a=25.

     所以乙班增加人數(shù)后平均每小時(shí)植樹(shù)45棵或25棵.    

【解析】(1)由圖像可知,一條是過(guò)原點(diǎn)的直線(設(shè)y=k1x),另一條不過(guò)原點(diǎn)的直線(設(shè)y=k2x+b),利用圖像上點(diǎn)的坐標(biāo),用待定系數(shù)法即可

(2)已知自變量(x=8),代入函數(shù)解析式求出函數(shù)值即可

(3)兩班之間植樹(shù)的總量相差20棵,有兩種情況①乙班比甲班多植樹(shù)20棵;②甲班比乙班多植樹(shù)20棵,根據(jù)等量關(guān)系,列出方程求值即可

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng).乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù).設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式.
(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵?
(3)如果6個(gè)小時(shí)后,甲班保持前6個(gè)小時(shí)的工作效率,乙班通過(guò)增加人數(shù),提高了工作效率,這精英家教網(wǎng)樣繼續(xù)植樹(shù)2小時(shí),活動(dòng)結(jié)束.當(dāng)x=8時(shí),兩班之間植樹(shù)的總量相差20棵,求乙班增加人數(shù)后平均每小時(shí)植樹(shù)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng)、乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù)、設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)),y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式;
(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年山東省濟(jì)南市歷城區(qū)西營(yíng)鎮(zhèn)中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng).乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù).設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式.
(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵?
(3)如果6個(gè)小時(shí)后,甲班保持前6個(gè)小時(shí)的工作效率,乙班通過(guò)增加人數(shù),提高了工作效率,這樣繼續(xù)植樹(shù)2小時(shí),活動(dòng)結(jié)束.當(dāng)x=8時(shí),兩班之間植樹(shù)的總量相差20棵,求乙班增加人數(shù)后平均每小時(shí)植樹(shù)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年山東省泰安市寧陽(yáng)縣中考數(shù)學(xué)模擬試卷(6)(解析版) 題型:解答題

(2009•長(zhǎng)春)某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng).乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù).設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式.
(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵?
(3)如果6個(gè)小時(shí)后,甲班保持前6個(gè)小時(shí)的工作效率,乙班通過(guò)增加人數(shù),提高了工作效率,這樣繼續(xù)植樹(shù)2小時(shí),活動(dòng)結(jié)束.當(dāng)x=8時(shí),兩班之間植樹(shù)的總量相差20棵,求乙班增加人數(shù)后平均每小時(shí)植樹(shù)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市初中畢業(yè)、升學(xué)考試數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•長(zhǎng)春)某部隊(duì)甲、乙兩班參加植樹(shù)活動(dòng).乙班先植樹(shù)30棵,然后甲班才開(kāi)始與乙班一起植樹(shù).設(shè)甲班植樹(shù)的總量為y(棵),乙班植樹(shù)的總量為y(棵),兩班一起植樹(shù)所用的時(shí)間(從甲班開(kāi)始植樹(shù)時(shí)計(jì)時(shí))為x(時(shí)).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當(dāng)0≤x≤6時(shí),分別求y、y與x之間的函數(shù)關(guān)系式.
(2)如果甲、乙兩班均保持前6個(gè)小時(shí)的工作效率,通過(guò)計(jì)算說(shuō)明,當(dāng)x=8時(shí),甲、乙兩班植樹(shù)的總量之和能否超過(guò)260棵?
(3)如果6個(gè)小時(shí)后,甲班保持前6個(gè)小時(shí)的工作效率,乙班通過(guò)增加人數(shù),提高了工作效率,這樣繼續(xù)植樹(shù)2小時(shí),活動(dòng)結(jié)束.當(dāng)x=8時(shí),兩班之間植樹(shù)的總量相差20棵,求乙班增加人數(shù)后平均每小時(shí)植樹(shù)多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案