【題目】關(guān)于頻率與概率有下列幾種說法:
①“明天下雨的概率是 90%”表示明天下雨的可能性很大;
②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;
③“某彩票中獎(jiǎng)的概率是 1%”表示買 10 張?jiān)摲N彩票不可能中獎(jiǎng);
④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近.
正確的說法是( )
A. ①③ B. ①④ C. ②③ D. ②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN//直線PQ,點(diǎn)A、B分別是直線MN、PQ上的兩點(diǎn).將射線AM繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn),射線BQ繞點(diǎn)B順時(shí)針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為AM′、BQ′,已知射線AM、射線BQ旋轉(zhuǎn)的速度之和為7度/秒.
(1)如果射線BQ 先轉(zhuǎn)動(dòng)30°后,射線AM、BQ′再同時(shí)旋轉(zhuǎn)10秒時(shí),射線AM′與BQ′第一次出現(xiàn)平行.求射線AM、BQ的旋轉(zhuǎn)速度;
(2)若射線AM、BQ分別以(1)中速度同時(shí)轉(zhuǎn)動(dòng)t秒,在射線AM′與AN重合之前,求t為何值時(shí)AM′⊥BQ′;
(3)若∠BAN=45°,射線AM、BQ分別以(1)中的速度同時(shí)轉(zhuǎn)動(dòng)t秒,在射線AM′與AN重合之前,射線AM′與BQ′交于點(diǎn)H,過點(diǎn)H作HC⊥PQ,垂足為C,如圖2所示,設(shè)∠BAH=α,∠BHC=β,求α和β滿足的數(shù)量關(guān)系,直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1.
(1)如果點(diǎn)A,D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個(gè)點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出B和C的坐標(biāo);
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E是OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則DF:FC=( )
A.1:4
B.1:3
C.1:2
D.1:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)邊長為6的等邊三角形電子跳蚤游戲盤.如果跳蚤開始時(shí)在AB邊的P0處,且BP0=1,跳蚤第一步從P0跳到BC邊的P1(第1次落點(diǎn))處,且BP1=BP0;第二步從P1跳到AC邊的P2(第2次落點(diǎn))處,且CP2=CP1;第三步從P2 跳到AB邊的P3(第3次落點(diǎn))處,且AP3=AP2;…;跳蚤按上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2017與P2018之間的距離為( 。
A. 1 B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE.
(2)如圖,若BE的延長線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45,原題設(shè)其它條件不變,求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,以O(shè)B為一邊作∠OBM=60°,且BO=BM,連接CM,OM.
(1)判斷AO與CM的大小關(guān)系并證明;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com