如圖,B地在A地的正東方向,兩地相距28km,A,B兩地之間有一條東北走向的高速公路,A,B兩地分別到這條高速公路的距離相等,上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處.至上午8:20,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110km/h,問該車有否超速行駛?
解:作AO⊥PC 于O
點B 在A 正東方向,PQ為東北方向,
那么∠ACP= ∠QCP=45 °
又因為∠ACP= ∠QCP=45 °,∠AOC= ∠BQC=90 °且AO=BQ
所以△ACO ≌△BCQ (角角邊定理)
所以AC=BC=14、OC=CQ=14
因為P 在A 正南方向,
即∠PAC=90 °
所以PC= AC=28
所以PQ=PC+CQ=28+14=42
所以該車時速:42km/(1/3)h=126(km/h)>110(km/m)
所以已經(jīng)超速。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B地在A地的正東方向,兩地相距28km,A,B兩地之間有一條東北走向的高速公路,A,B兩地分別到這條高速公路的距離相等.上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處.至上午8:20,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110km/h,問該車有否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第7章《銳角三角函數(shù)》?碱}集(22):7.6 銳角三角函數(shù)的簡單應(yīng)用(解析版) 題型:解答題

如圖,B地在A地的正東方向,兩地相距28km,A,B兩地之間有一條東北走向的高速公路,A,B兩地分別到這條高速公路的距離相等.上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處.至上午8:20,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110km/h,問該車有否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《解直角三角形》?碱}集(19):1.5 解直角三角形的應(yīng)用(解析版) 題型:解答題

如圖,B地在A地的正東方向,兩地相距28km,A,B兩地之間有一條東北走向的高速公路,A,B兩地分別到這條高速公路的距離相等.上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處.至上午8:20,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110km/h,問該車有否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第21章 二次根式》2009年自主學(xué)習(xí)達(dá)標(biāo)檢測(解析版) 題型:解答題

如圖,B地在A地的正東方向,兩地相距28km,A,B兩地之間有一條東北走向的高速公路,A,B兩地分別到這條高速公路的距離相等.上午8:00測得一輛在高速公路上行駛的汽車位于A地的正南方向P處.至上午8:20,B地發(fā)現(xiàn)該車在它的西北方向Q處,該段高速公路限速為110km/h,問該車有否超速行駛?

查看答案和解析>>

同步練習(xí)冊答案