【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°.
【答案】30
【解析】在矩形ABCD中,∠ADC=90°,DE平分∠ADC,則∠ADE=∠CDE=45°,
又∠EDO=15°,則∠ADO=∠ADE+∠EDO=60°,在矩形ABCD中,對角線AC與BD相等且互相平分,AO=DO,又∠ADO=60°,得△ADO是等邊三角形,AO=DO=AD,
∠AOD=∠DAO=∠ADO=60°,又∠DAE=90°,∠ADE=45°,△ADE是等腰直角三角形,AD=AE,∠AED=∠ADE=45°,∴AO=AD=AE,△EAO是等腰三角形,∠AOE=∠AEO,
又∠EAO=90°-∠DAO=30°,得∠AEO=(180°-∠EAO)/2=75°,
∠OED=∠AEO-∠AED=75°-45°=30°,故答案為:30.
科目:初中數學 來源: 題型:
【題目】先閱讀下列解題過程,然后回答問題:
解方程:
解:①當≥0時,原方程可化為: ,解得;
②當<0時,原方程可化為: ,解得;
所以原方程的解是或
(1)解方程:
(2)探究:當為何值時,方程 ①無解;②只有一個解;③有兩個解。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O與斜邊AC交于點D,E為BC邊的中點,連接DE,OE.
(1)求證:DE是⊙O的切線.
(2)填空: ①當∠CAB=時,四邊形AOED是平行四邊形;
②連接OD,在①的條件下探索四邊形OBED的形狀為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,過等邊三角形ABC邊AB上一點D作DE∥BC交邊AC于點E,分別取BC,DE的中點M,N,連接MN.
(1)發(fā)現:在圖1中, =;
(2)應用:如圖2,將△ADE繞點A旋轉,請求出 的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點,若BD⊥CE,請直接寫出 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4, 的平分線交DC于點E.若點P,Q分別是AD和AE上的動點,則的最小值是( 。
A. 2 B. 4 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(7,3),點E在邊AB上,且AE=1,已知點P為y軸上一動點,連接EP,過點O作直線EP的垂線段,垂足為點H,在點P從點F(0, )運動到原點O的過程中,點H的運動路徑長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內.求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數據sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC的三條角平分線相交于點O,過點O作EF∥BC,分別交AB于E,交AC于F,則圖中的等腰△有( )個
(A)4(B)5
(C)6(D)7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示,直線,另一直線交于,交于,且,點為直線上一動點,點為直線上一動點,且.
()如圖,當點在點右邊且點在點左邊時,的平分線交的平分線于點,求的度數;
()如圖,當點在點右邊且點在點右邊時,的平分線交的平分線于點,求的度數;
()當點在點左邊且點在點左邊時,的平分線交的平分線所在直線交于點,請直接寫出的度數,不說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com