【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l:y=x+2交x軸于點(diǎn)A,交y軸于點(diǎn)A1 , 點(diǎn)A2 , A3 , …在直線(xiàn)l上,點(diǎn)B1 , B2 , B3 , …在x軸的正半軸上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均為等腰直角三角形,直角頂點(diǎn)都在x軸上,則第n個(gè)等腰直角三角形AnBn1Bn頂點(diǎn)Bn的橫坐標(biāo)為

【答案】2n+1﹣2
【解析】解:由題意得OA=OA1=2,
∴OB1=OA1=2,
B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的橫坐標(biāo)為2n+1﹣2.
故答案為:2n+1﹣2.

先求出B1、B2、B3…的坐標(biāo),探究規(guī)律后,即可根據(jù)規(guī)律解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線(xiàn)上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=2 ,DE=2,求AD的長(zhǎng).
(3)在(2)的條件下,求弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BA=AE=DC,AD=EC,CE⊥AE,垂足為E.
(1)求證:△DCA≌△EAC;
(2)只需添加一個(gè)條件,即 , 可使四邊形ABCD為矩形.請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把多塊大小不同的30°直角三角板如圖所示,擺放在平面直角坐標(biāo)系中,第一塊三角板AOB的一條直角邊與y軸重合且點(diǎn)A的坐標(biāo)為(0,1),∠ABO=30°;第二塊三角板的斜邊BB1與第一塊三角板的斜邊AB垂直且交y軸于點(diǎn)B1;第三塊三角板的斜邊B1B2與第二塊三角板的斜邊BB1垂直且交x軸于點(diǎn)B2;第四塊三角板的斜邊B2B3與第三塊三角板的斜邊B1B2C垂直且交y軸于點(diǎn)B3;…按此規(guī)律繼續(xù)下去,則點(diǎn)B2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AD=4cm,把紙片沿直線(xiàn)AC折疊,點(diǎn)B落在E處,AE交DC于點(diǎn)O,若AO=5cm,則AB的長(zhǎng)為(
A.6cm
B.7cm
C.8cm
D.9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線(xiàn),交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點(diǎn)F,若DF=1,BC=2 ,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線(xiàn)上在第一象限內(nèi)的一點(diǎn),直線(xiàn)BP與y軸相交于點(diǎn)C.
(1)求拋物線(xiàn)y=﹣x2+ax+b的解析式;
(2)當(dāng)點(diǎn)P是線(xiàn)段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)計(jì)算:﹣14+ sin60°+( 2﹣(π﹣ 0
(2)先化簡(jiǎn),再求值:(1﹣ )÷ ,其中x= ﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形ABCD的邊AB延長(zhǎng)至點(diǎn)E,使BE=AB,連接DE,EC,DE,交BC于點(diǎn)O.

(1)求證:△ABD≌△BEC;
(2)連接BD,若∠BOD=2∠A,求證:四邊形BECD是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案