(11分)如圖,四邊形ABCD是正方形,以CG為一邊在正方形ABCD外作正方形CEFG,連結(jié)BG,DE,猜想如圖中線段BG、線段DE的關(guān)系并證明.
詳見解析
【解析】
試題分析:由于四邊形ABCD、四邊形CEFG是正方形,那么又BC=CD,CG=CF,∠BCD=∠GCE=90°,利用等式性質(zhì)有∠BCD+∠DCG=∠GCE+∠DCG,即∠BCG=∠DCE,利用SAS可證△BCG≌△DCE,那么有BG=DE,∠1=∠2,又∵∠BHC=∠DHO,于是可得∠1+∠BHC=∠2+∠DHO,即∠2+∠DHO=90°,結(jié)合三角形內(nèi)角和定理可得∠DOH=90°,從而BG⊥DE.
試題解析:猜想:BG=DE,且BG⊥DE.
證明:如右圖所示,
∵四邊形ABCD、四邊形CEFG是正方形,
∴∠BCD=∠GCE=90°,BC=CD,CE=CG,
∴∠BCD+∠DCG=∠GCF+∠DCG,
即∠BCG=∠DCE,
∴△BCG≌△DCE,
∴∠1=∠2,BG=DE,
又∵∠BHC=∠DHO,
∴∠1+∠BHC=∠2+∠DHO,
即∠2+∠DHO=90°,
∴∠DOH=180°﹣90°=90°,
∴BG⊥DE.
考點:1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì).
考點分析: 考點1:四邊形 四邊形:四邊形的初中數(shù)學(xué)中考中的重點內(nèi)容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。主要考察內(nèi)容:①多邊形的內(nèi)角和,外角和等問題②圖形的鑲嵌問題③平行四邊形,矩形,菱形,正方形,等腰梯形的性質(zhì)和判定。突破方法:①掌握多邊形,四邊形的性質(zhì)和判定方法。熟記各項公式。②注意利用四邊形的性質(zhì)進(jìn)行有關(guān)四邊形的證明。③注意開放性題目的解答,多種情況分析。 試題屬性科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省徐州市九年級上學(xué)期第一次質(zhì)檢數(shù)學(xué)試卷(解析版) 題型:填空題
在實數(shù)范圍內(nèi)定義一種運算規(guī)定a※b=a2-b2,則方程(x+2)※5=0的解為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市校九年級9月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
若代數(shù)式在實數(shù)范圍內(nèi)有意義,則的取值范圍是( )
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河北省沙河市九年級上學(xué)期第一次摸底數(shù)學(xué)試卷(解析版) 題型:選擇題
已知關(guān)于x的一元二次方程(a-1)x-2x+1=0有兩個不相等的實數(shù)根,則a的取值范圍是( )
A.a(chǎn)<2 B.a(chǎn)>2 C.a(chǎn)<2且a≠1 D.a(chǎn)<-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河北省沙河市九年級上學(xué)期第一次摸底數(shù)學(xué)試卷(解析版) 題型:選擇題
已知4個數(shù)據(jù):,,a,b,其中a,b是方程的兩個根,則這4個數(shù)據(jù)的中位數(shù)是( )
A.1 B. C.2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河南省平頂山市九年級上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知菱形ABCD的兩條對角線分別是6和8,M、N分別是BC、CD的中點,點P是對角線BD上一點,則PM+PN的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河南省平頂山市九年級上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
菱形兩條對角線長度比為1:,則菱形較小的內(nèi)角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河南平頂山四十三中八年級上學(xué)期第一次段測數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7 cm,則正方形A,B,C,D的面積之和為___________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河南省人教版九年級下學(xué)期模擬數(shù)學(xué)試卷(解析版) 題型:解答題
某商店經(jīng)營一批進(jìn)價每件為2元的小商品,在市場營銷的過程中發(fā)現(xiàn):如果該商品按每件最低價3元銷售,日銷售量為18件,如果單價每提高1元,日銷售量就減少2件.設(shè)銷售單價為x(元),日銷售量為y(件).
(1)寫出日銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)日銷售的毛利潤(毛利潤=銷售總額-總進(jìn)價)為P(元),求出毛利潤P(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(3)在下圖所示的坐標(biāo)系中畫出P關(guān)于x的函數(shù)圖象的草圖,并標(biāo)出頂點的坐標(biāo);
(4)觀察圖象,說出當(dāng)銷售單價為多少元時,日銷售的毛利潤最高?是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com