如圖,過(guò)平行四邊形ABCD的對(duì)角線BD上一點(diǎn)M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的平行四邊形AEMG的面積S1與平行四邊形HCFM的面積S2的大小關(guān)系是( 。
A.S1>S2B.S1=S2C.S1<S2 D.2S1=S2
B

試題分析:根據(jù)平行四邊形的性質(zhì)和判定得出平行四邊形GBEP、GPFD,證△ABD≌△CDB,得出△ABD和△CDB的面積相等;同理得出△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,相減即可求出答案.
∵四邊形ABCD是平行四邊形,EF∥BC,HG∥AB,
∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,
∴四邊形HBEM、GMFD是平行四邊形,

∴△ABD≌△CDB,
即△ABD和△CDB的面積相等;
同理△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,
故四邊形AEMG和四邊形HCFM的面積相等,即S1=S2
故選B.
點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知E,F(xiàn)分別是平行四邊形ABCD的邊AD、BC上的點(diǎn),且AE=AD,CF=BC.求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF
(2)填空:
①當(dāng)     s時(shí),四邊形ACFE是菱形;
②當(dāng)     s時(shí),以A,F(xiàn),C,E為頂點(diǎn)的四邊形是直角梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC與BD交于點(diǎn)O,廷長(zhǎng)BC到E,使得CE=AD,連接DE。
(1)求證:BD=DE。
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80º,那么∠CDE的度數(shù)為(     )
A.20ºB.25ºC.30ºD.35º

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則的值為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若矩形對(duì)角線相交所成鈍角為120°,較短的邊長(zhǎng)為4cm,則對(duì)角線的長(zhǎng)為
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形硬紙片ABCD的邊長(zhǎng)是4,點(diǎn)E、F分別是AB、BC的中點(diǎn),若沿左圖中的虛線剪開,拼成如下右圖的一座“小別墅”,則圖中陰影部分的面積是(      ).

A.2    B.4    C.8     D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,∠1=250,∠B=650,AB⊥AC。

(1)AD與BC有怎樣的位置關(guān)系?為什么?
(2)根據(jù)題中的條件,能判斷AB與CD平行嗎?如果能,請(qǐng)說(shuō)明理由;如果不能,還應(yīng)添加什么條件?

查看答案和解析>>

同步練習(xí)冊(cè)答案