【題目】已知α是銳角,且點A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關(guān)系是(
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a

【答案】D
【解析】解:拋物線y=﹣x2+x+3的對稱軸是直線x= ,開口向下, 點A( ,a)為頂點,即最高點,
所以,a最大,A、B錯誤;
又1<sin30°+cos30°<2,﹣m2+2m﹣2=﹣(m﹣1)2﹣1≤﹣1,
可知,B點離對稱軸近,C點離對稱軸遠,
由于拋物線開口向下,
離對稱軸越遠,函數(shù)值越小,c<b,C錯誤;
故選D.
先計算對稱軸為直線x= ,拋物線開口向下,可知A點為頂點(最高點),a最大;再根據(jù)B、C兩點與對稱軸的遠近,比較縱坐標的大。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,你同意小明的表示方法嗎?

事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請解答:已知:10+=x+y,其中x是整數(shù),0<y<1,x-y的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補充條件后仍不一定能保證ABC≌△ABC,則補充的這個條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣ x2+ x+4經(jīng)過A、B兩點.

(1)寫出點A、點B的坐標;
(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線上是否存在一點P,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.

(1)把△ABC平移至點A′的位置,使點A與點A′對應(yīng),畫出平移后得到的△A′B′C′;

(2)△A′B′C′可以看成是把△ABC如何平移得到的?

(3)寫出圖中與線段AA′平行且相等的線段(可用字母表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】概念學習

規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.

從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.

理解概念

如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成推理過程

如圖,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求證:AE=CF.

證明∵AB∥DC,

∴∠1=

∵AE⊥BD,CF⊥BD,

∴∠AEB=

∵BF=DE,

∴BF﹣EF=DE﹣EF

=

∴△ABE≌△CDF

∴AE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知圖1將線段AB向右平移1個單位長度,2是將線段AB折一下再向右平移1個單位長度,請在圖3中畫出一條有兩個折點的折線向右平移1個單位長度的圖形;

(2)若長方形的長為a,寬為b,請分別寫出三個圖形中除去陰影部分后剩下部分的面積;

(3)如圖4,在寬為10 m,長為40 m的長方形菜地上有一條彎曲的小路,小路寬度為1 m,求這塊菜地的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用計算器計算:

(1)π-(精確到0.01);

(2) (精確到0.001);

(3)4(精確到0.1);

(4)+()(精確到0.01).

查看答案和解析>>

同步練習冊答案