【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且.
(1)求證:直線CP是⊙O的切線.
(2)若,,求直徑AC的長(zhǎng)及點(diǎn)B到AC的距離.
(3)在第(2)的條件下,求的周長(zhǎng).
【答案】(1)證明見(jiàn)解析;
(2)AC=5,B到AC的距離為:4;
(3).
【解析】
(1))根據(jù)∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,從而得到∠BCP+∠BCA=90°,證得直線CP是⊙O的切線;
(2)作BD⊥AC于點(diǎn)D,得到BD∥PC,從而利用sin∠BCP= sin∠DBC,求得DC=2,再根據(jù)勾股定理求得點(diǎn)B到AC的距離,連接AN,然后再在直角三角形中利用三角函數(shù)求得AC即可;
(3)由BD∥PC求得△ABD∽△APC,利用對(duì)應(yīng)邊成比例求得CP、BP的長(zhǎng)度,從而求得△BCP的周長(zhǎng).
解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°,
∴2∠BCP+2∠BCA=180°,
∴∠BCP+∠BCA=90°,即∠PCA=90°,
又∵AC是⊙O的直徑,
∴直線CP是⊙O的切線;
(2)如圖:
作BD⊥AC于點(diǎn)D,
∵PC⊥AC,
∴BD∥PC,
∴∠PCB=∠DBC
∵BC=2,sin∠BCP=,
∴sin∠BCP= sin∠DBC=,解得:DC=2,
∴由勾股定理得:BD=4,
∴點(diǎn)B到AC的距離為4;
連接AN,在Rt△ACN中,CN= ,
∴AC==5;
(3)∵CD=2,
∴AD=AC﹣CD=5﹣2=3,
∵∠ABC=∠ACB,
∴AB=AC=5,
∵BD∥CP,
∴△ABD∽△APC,
∴,即,
∴CP=,PB=,
∴△BCP的周長(zhǎng)為BC+CP+BP=++=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,點(diǎn)M是AC邊的中點(diǎn),點(diǎn)N是BC邊上的任意一點(diǎn),若點(diǎn)C關(guān)于直線MN的對(duì)稱點(diǎn)C′恰好落在△ABC的中位線上,則CN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,對(duì)角線AC、BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)E,使CE=CA,連接AE,在AB上取一點(diǎn)N,使BN=BE,連接CN并延長(zhǎng),分別交BD、AE于點(diǎn)M、F,連接FO.
(1) 求證:△ABE ≌△CBN;(2) 求FO的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,隨機(jī)抽樣調(diào)查了部分八年級(jí)學(xué)生的視力,以下是根據(jù)調(diào)査結(jié)果繪制的統(tǒng)計(jì)表與統(tǒng)計(jì)圖的一部分.根據(jù)以上信息,解答下列問(wèn)題:
分組 | 視力 | 人數(shù) |
A | 3.95≤x≤4.25 | 2 |
B | 4.25<x≤4.55 | a |
C | 4.55<x≤4.85 | 20 |
D | 4.85<x≤5.15 | b |
E | 5.15<x≤5.45 | 3 |
(1)統(tǒng)計(jì)表中,a=______,b=______;
(2)視力在4.85<x≤5.15范圍內(nèi)的學(xué)生數(shù)占被調(diào)查學(xué)生數(shù)的百分比是______;
(3)本次調(diào)查中,視力的中位數(shù)落在______組;
(4)若該校八年級(jí)共有400名學(xué)生,則視力超過(guò)4.85的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2∥l3,等腰直角三角形ABC的三個(gè)頂點(diǎn)A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點(diǎn)D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列動(dòng)車從A地開(kāi)往B地,一列普通列車從B地開(kāi)往A地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系,下列說(shuō)法中正確的是:( )
①AB兩地相距1000千米;②兩車出發(fā)后3小時(shí)相遇;③普通列車的速度是100千米/小時(shí);④動(dòng)車從A地到達(dá)B地的時(shí)間是4小時(shí).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(a≠0)的圖象在第一象限交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(m,4),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過(guò)B作BD⊥y軸,垂足為D,交OA于C.若OC=CA,
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在直線BD上是否存在一點(diǎn)E,使得△AOE是直角三角形,求出所有可能的E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點(diǎn)A,B(﹣3,0),C(1,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積最大?
(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P作PE∥x軸交拋物線于點(diǎn)E,連接DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=kx+b和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則B4的坐標(biāo)_____,Bn的坐標(biāo)_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com