如圖,直線y=-
3
3
x+1
與x軸、y軸分別交于點A、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°,如果在第二象限內(nèi)有一點P(a,
1
2
),且△ABP的面積與△ABC的面積相等,求a的值.
連接OP,
∵直線y=-
3
3
x+1
與x軸、y軸分別交于點A、B,
∴A(
3
,0),B(0,1),AB=
12+(
3
)2
=2,
∴S△ABP=S△ABC=2,
又S△ABP=S△OPB+S△OAB-S△AOP
∴-a×1+
3
×1-
1
2
×
3
=4,
解得a=
3
2
-4

答:a的值為a=
3
2
-4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

一次函數(shù)的圖象經(jīng)過點(-3,-2)和(1,6),則
(1)求y與x之間的函數(shù)關系式,并畫出此函數(shù)的圖象;
(2)若函數(shù)的圖象過點(m,3m),試求m的值
(3)如果y的取值為-1≤y≤2,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一慢車和一快車沿相同路線從A地到B地,所行的路程與時間的函數(shù)圖象如圖所示,試根據(jù)圖象,回答下列問題:
(1)快車追上慢車需幾個小時?
(2)求慢車、快車的速度;
(3)求A、B兩地之間的路程.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系內(nèi),已知點A(0,6)、點B(8,0),動點P從點A開始沿線段AO以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始沿線段BA以每秒2個單位長度的速度向點A移動,設點P、Q移動的時間為t秒.
(1)求直線AB的解析式;
(2)當t為何值時,△APQ與△AOB相似?
(3)當t為何值時,△APQ的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,解答以下問題:
(1)求甲、乙兩人的速度;
(2)求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某工廠生產(chǎn)甲、乙兩種不同的產(chǎn)品,所需原料為同一種原材料,生產(chǎn)每噸產(chǎn)品所需原材料的數(shù)量和生產(chǎn)過程中投入的生產(chǎn)成本的關系如表所示:
產(chǎn)品
原材料數(shù)量(噸)12
生產(chǎn)成本(萬元)42
若該工廠生產(chǎn)甲種產(chǎn)品m噸,乙種產(chǎn)品n噸,共用原材料160噸,銷售甲、乙兩種產(chǎn)品的利潤y(萬元)與銷售量x(噸)之間的函數(shù)關系如圖所示,全部銷售后獲得的總利潤為200萬元.
(1)求m、n的值;
(2)試問:該工廠投入的生產(chǎn)成本多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l的函數(shù)表達式為y=-
4
3
x+8,且l與x軸,y軸分別交于A,B兩點,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時動點P從A點開始在線段AO上以每秒1個單位長度的速度向點O移動,設點Q,P移動的時間為t秒
(1)點A的坐標為______,點B的坐標為______;
(2)當t=______時,△APQ與△AOB相似;
(3)(2)中當△APQ與△AOB相似時,線段PQ所在直線的函數(shù)表達式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某電視臺“走基層”欄目的一位記者乘汽車赴320km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結(jié)論正確的是(  )
A.汽車在高速公路上的行駛速度為100km/h
B.鄉(xiāng)村公路總長為90km
C.汽車在鄉(xiāng)村公路上的行駛速度為60km/h
D.該記者在出發(fā)后5h到達采訪地

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

汽車油箱中余油量Q(升)與它的行駛時間t(小時)之間為如圖所示的一次函數(shù)關系,則其解析式為______.

查看答案和解析>>

同步練習冊答案