【題目】解不等式組

請結合題意填空,完成本題的解答

(1)解不等式①,得___________;

(2)解不等式②,得___________

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式組的解集為_______________

【答案】(1);(2);(3)圖見解析;(4)

【解析】

1)按照移項、系數(shù)化為1的步驟解不等式①即可;

2)按照移項、合并同類項、系數(shù)化為1的步驟解不等式②即可;

3)根據(jù)數(shù)軸的定義,將不等式①和②的解集在數(shù)軸上表示出來即可;

4)找出(3)中的公共部分即可.

1)移項,得

系數(shù)化為1,得

故答案為:;

2)移項,得

合并同類項,得

系數(shù)化為1,得

故答案為:;

3)把不等式①和②的解集在數(shù)軸上表示出來如下所示:

4)找出(3)中的公共部分得:原不等式組的解集為

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們把分子為1的分數(shù)叫做單位分數(shù),如:,,任何一個單位分數(shù)都可以拆分成兩個不同的單位分數(shù)的和,如“=+”,“=+……

1)根據(jù)對上述式子的觀察,你會發(fā)現(xiàn).=·請將問題中的空格補充完整.

2)進一步思考,單位分數(shù)n是不小于2的正整數(shù)),請寫出■和●所表示的代數(shù)式,并對你的結論進行驗證.

3)請用(2)中你找出的規(guī)律解方程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人字折疊梯完全打開后如圖1所示,B,C是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=ACBD=140cm,∠BAC=40°,求點D離地面的高度DE.(結果精確到0.1cm;參考數(shù)據(jù)sin70°≈0. 94,cos70°≈0.34sin20°≈0.34,cos20°≈0.94

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②DFDC;③SDCF4SDEF;④tanCAD.其中正確結論的個數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20203月,我國湖北省A、B兩市遭受嚴重新冠肺炎影響,鄰近縣市C、D獲知AB兩市分別急需救災物資200噸和300噸的消息后,決定調運物資支援災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往AB兩市的費用分別為每噸15元和30元,設從D市運往B市的救災物資為x噸.

1)設C、D兩市的總運費為w元,求wx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)經(jīng)過當?shù)卣拇罅χС郑瑥?/span>D市到B市的運輸時間縮短了,運費每噸減少m元(m0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結論:

①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2>y1,則x2>4;

④一元二次方程cx2+bx+a=0的兩個根為﹣1

其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,ABC的平分線交O于點D,過點D作DEAC交BC的延長線于點E.

(1)求證:DE是O的切線;

(2)若AB=25,BC=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:點軸上一點,將函數(shù)的圖象位于直線右側部分,以軸為對稱軸翻折,得到新的函數(shù)的圖象,我們稱函數(shù)是函數(shù)的相關函數(shù),函數(shù)的圖象記作,函數(shù)的圖象未翻折部分記作,圖象起來記作圖象.

例如:函數(shù)的解析式為,時,它的相關函數(shù)的解析式為

(1)如圖,函數(shù)的解析式為,時,它的相關函數(shù)的解析式為_________;

(2)函數(shù)的解析式為,時,圖象上某點的縱坐標為2,求該點的橫坐標;

(3)函數(shù)的解析式為,

①已知點AB的坐標分別為、,當時,且圖像與線段只有一個共點時,結合函數(shù)圖象,求的取值范圍;

②若,是圖象上任意一點,當時,的最大值始終保持不變,求的取值范圍(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ,連接,點,分別是的點(點不與點重合),,相交于點.

(1)的長;

(2)求證:;

(3)時,請直接寫出的長.

查看答案和解析>>

同步練習冊答案