如圖,“五一”節(jié),小明和同學(xué)一起到游樂場游玩,游樂場的大型摩天輪的半徑為20米,旋轉(zhuǎn)1周需要24分鐘(勻速)。小明乘坐最底部的車廂按逆時針方向旋轉(zhuǎn)(離地面約1米)開始1周的觀光。
(1)4分鐘后小明離地面的高度是多少?
(2)摩天輪啟動多長時間后,小明離地面的高度到達(dá)11米?
(3)在旋轉(zhuǎn)一周的過程中,小明將有多長時間連續(xù)保持在離地面31米以上的空中?
(1)11;(2)4或20;(3)8分鐘.

試題分析:(1)設(shè)4分鐘后小明到達(dá)點C,過點C作CD⊥OB于點D,根據(jù)旋轉(zhuǎn)的時間可以求得旋轉(zhuǎn)角∠COD,利用三角函數(shù)即可求得OD的長,從而求解;
(2)(2)根據(jù)所給的高度,能求出OD的長,根據(jù)直角三角形中,若直角邊是斜邊的一半,那么這個直角邊所對的角是30°,從而求出轉(zhuǎn)過的∠COD的情況并求解.
(3)當(dāng)旋轉(zhuǎn)到E處時,作弦EF⊥AO交AO的延長線于點H,連接OE,OF,此時EF離地面高度為HA,在直角△OEH中,利用三角函數(shù)求得∠HOE的度數(shù),則∠EOF的度數(shù)即可求得,則旋轉(zhuǎn)的時間即可求得.
(1)設(shè)4分鐘后小明到達(dá)點C,過點C作CD⊥OB于點D,DA即為小明離地的高度,
∵∠COD==60°,
∴OD=OC=×20=10,
∴DA=20-10+1=11(m).
答:計時4分鐘后小明離地面的高度是11m;

(2)∵11<OA=21則小明在摩天輪的下半圓,
∵DA=OA-OD,
∴在Rt△ODC中,OD=21-11=10,OC=20,
∴∠COD=60°,
∴所需時間是分鐘,或分鐘小明離地面的高度將首次達(dá)到11m.
(3)∵當(dāng)旋轉(zhuǎn)到E處時,作弦EF⊥AO交AO的延長線于點H,連接OE,OF,此時EF離地面高度為HA.
當(dāng)HA=31時,OH=31-1-20=10,
∴OH=OE,
∴∠HOE=60°,
∴∠FOE=120°.
∵每分鐘旋轉(zhuǎn)的角度為:,
∴由點E旋轉(zhuǎn)到F所用的時間為:(分鐘).
答:在旋轉(zhuǎn)一周的過程中,小明將有8分鐘的時間連續(xù)保持在離地面31m以上的空中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C,D兩點在⊙O上,若∠BCD=40°,則∠ABD的度數(shù)為   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已點A(6,0),點B(0,6),動點C在以半徑為3的⊙O上,連接OC,過D作OD⊥OC,OD與⊙O相交于點D(其中點C、D按順時針方向排列),連接AB.
(1)當(dāng)OC//AB時,∠BOC的度數(shù)為   
(2)連接AC、BC,當(dāng)點C在⊙O上運動到什么位置時,△ABC的面積最大?并求出△ABC的面積的最大值.
(3)連接AD,當(dāng)OC//AD時,
①求出點C的坐標(biāo);
②直線BC是否為⊙O的切線?請作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩個同心圓的圓心為O,兩圓的半徑分別為5,3,其中A,B兩點在大圓上,C,D在小圓上,且∠AOB=∠COD.
(1)求證:AC=BD;
(2)若∠AOB=120°,求線段AC,弧CD,線段BD,弧AB組成的封閉圖形的面積;
(3)若AB與小圓相切,分別求AB,CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E.DF⊥AC于點F.
(1)求證:DF是⊙O的切線.
(2)當(dāng)∠B的度數(shù)是多少時,DE∥AB?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設(shè)DA=2,圖中陰影部分的面積為           。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圓錐的高是4cm,母線長5cm,則其側(cè)面展開圖的面積為(  )
A.30πcm2B.24πcm2C.15πcm2D.18πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一圓錐的側(cè)面展開圖是半徑為2的半圓,則該圓錐的全面積是        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知扇形的圓心角為120°,半徑為3,扇形的周長為    .

查看答案和解析>>

同步練習(xí)冊答案