【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時(shí),以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.
(1)當(dāng)∠AOB=20°時(shí),求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=20°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm) (參考數(shù)據(jù):sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)
【答案】
(1)解:作OC⊥AB于點(diǎn)C,如圖2所示,
由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=20°,
∴∠BOC=10°
∴AB=2BC=2OBsin10°≈2×10×0.174≈3.5cm,
即所作圓的半徑約為3.5cm
(2)解:作AD⊥OB于點(diǎn)D,作AE=AB,如圖3所示,
∵保持∠AOB=20°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,
∴折斷的部分為BE,
∵∠AOB=20°,OA=OB,∠ODA=90°,
∴∠OAB=80°,∠OAD=70°,
∴∠BAD=10°,
∴BE=2BD=2ABsin10°≈2×3.5×0.174≈1.2cm,
即鉛筆芯折斷部分的長度是1.2cm.
【解析】(1)根據(jù)題意作輔助線OC⊥AB于點(diǎn)C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應(yīng)的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)O為邊AB的中點(diǎn),OD⊥BC于點(diǎn)D,AM⊥BC于點(diǎn)M,以點(diǎn)O為圓心,線段OD為半徑的圓與AM相切于點(diǎn)N.
(1)求證:AN=BD;
(2)填空:點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn), ①若AB=4,連結(jié)OC,則PC的最大值是;
②當(dāng)∠BOP=時(shí),以O(shè),D,B,P為頂點(diǎn)四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一條直線上.求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,李老師對(duì)大家說:“你任意想一個(gè)非零數(shù),然后按下列步驟操作,我會(huì)直接說出你運(yùn)算的最后結(jié)果.”
(1)若小明同學(xué)心里想的是數(shù)9,請(qǐng)幫他計(jì)算出最后結(jié)果: [(9+1)2﹣(9﹣1)2]×25÷9
(2)老師說:“同學(xué)們,無論你們心里想的是什么非零數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等.”小明同學(xué)想驗(yàn)證這個(gè)結(jié)論,于是,設(shè)心里想的數(shù)是a(a≠0),請(qǐng)你幫小明完成這個(gè)驗(yàn)證過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小傅某天下午營運(yùn)全是在東西走向的大道上行駛的,如果規(guī)定向東為正,行車?yán)锍蹋▎挝唬簁m)如下:
+11, -2, +3, +9, -11, +5, -15, -8
(1)當(dāng)把最后一名乘客送到目的地時(shí),小傅距離出車地點(diǎn)的距離為多少?
(2)若每千米的營運(yùn)額為5元,成本為2.7元/km,則這天下午他盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和都是等腰直角三角形,,四邊形是平行四邊形,下列結(jié)論中錯(cuò)誤的是( )
A. 以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針方向旋轉(zhuǎn)后與重合
B. 以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針方向旋轉(zhuǎn)后與重合
C. 沿所在直線折疊后,與重合
D. 沿所在直線折疊后,與重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC有一外接圓,其中∠B=90°,AB>BC,今欲在 上找一點(diǎn)P,使得 = ,以下是甲、乙兩人的作法: 甲:⑴取AB中點(diǎn)D
⑵過D作直線AC的平行線,交 于P,則P即為所求
乙:⑴取AC中點(diǎn)E
⑵過E作直線AB的平行線,交 于P,則P即為所求
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤C
D.甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料并解決有關(guān)問題:
我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對(duì)值的代數(shù)式,如化簡代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡代數(shù)式|x+1|+|x﹣2|可分以下3種情況:
①當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當(dāng)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3;
③當(dāng)x≥2時(shí),原式=x+1+x﹣2=2x﹣1.綜上討論,原式=.
通過以上閱讀,請(qǐng)你解決以下問題:
(1)化簡代數(shù)式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合并下列多項(xiàng)式中的同類項(xiàng):
(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;
(2)﹣a2b+2a2b;
(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;
(4)2a2b+3a2b﹣a2b
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com