【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(Ⅰ)如圖1.過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大;
(Ⅱ)如圖2,D為上一點,且OD經過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大。
【答案】(Ⅰ)36°(Ⅱ)30°
【解析】
試題分析:(Ⅰ)連接OC,首先根據切線的性質得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答案;
(Ⅱ)根據E為AC的中點得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性質求解即可.
試題解析:(Ⅰ)如圖,連接OC,
∵⊙O與PC相切于點C,
∴OC⊥PC,即∠OCP=90°,
∵∠CAB=27°,
∴∠COB=2∠CAB=54°,
在Rt△AOE中,∠P+∠COP=90°,
∴∠P=90°﹣∠COP=36°;
(Ⅱ)∵E為AC的中點,
∴OD⊥AC,即∠AEO=90°,
在Rt△AOE中,由∠EAO=10°,
得∠AOE=90°﹣∠EAO=80°,
∴∠ACD=∠AOD=40°,
∵∠ACD是△ACP的一個外角,
∴∠P=∠ACD﹣∠A=40°﹣10°=30°.
科目:初中數學 來源: 題型:
【題目】已知關于n的函數s=an2+bn(n為自然數),當n=9時,s<0;當n=10時,s>0.則n取( 。⿻r,s的值最。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數a,b在數軸上的表示如圖所示,則下列結論中:①ab<0,② ,③a+b<0, ④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b,正確的有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小蕓所在學習小組的同學們,響應“為祖國爭光,為奧運添彩”的號召,主動到附近的7個社區(qū)幫助爺爺、奶奶們學習英語日常用語.他們記錄的各社區(qū)參加其中一次活動的人數如下:33,32,32,31,28,26,32,那么這組數據的眾數和中位數分別是( 。
A. 32,31 B. 32,32 C. 3,31 D. 3,32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一水塘里有鯉魚、鯽魚、鰱魚共10 000尾,一漁民通過多次捕撈實驗后發(fā)現,鯉魚、鯽魚出現的頻率分別是31%和42%,則這個水塘里大約有鰱魚尾.
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域將鋪設塑膠地面作為運動場地.
(1)設通道的寬度為x米,則a= (用含x的代數式表示);
(2)若塑膠運動場地總占地面積為2430平方米.請問通道的寬度為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《戰(zhàn)狼2》中“犯我中華者,雖遠必誅”,令人動容,熱血沸騰.其票房突破56億元(5600000000元),5600000000用科學記數法表示為( 。
A.5.6×109B.5.6×108C.0.56×109D.56×108
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合題。
(1)如圖,在△ABC中,AC=BC,∠ACB=90°,直線l過點C,分別過A、B兩點作AD⊥l于點D,作BE⊥l于點E.求證:DE=AD+BE.
(2)如圖,已知Rt△ABC,∠C=90°.用尺規(guī)作圖法作出△ABC的角平分線AD;(不寫作法,保留作圖痕跡)
(3)若AB=10,CD=3,求△ABD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com