【題目】如圖,P是等邊外一點(diǎn),把繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到,已知,,則_______.(用含ab的代數(shù)式表示)

【答案】

【解析】

連接PQ,根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ABP≌△CBQ,△PBQ是等邊三角形,由全等三角形的性質(zhì)得到AP=QC,然后求出∠AQP是直角,再利用勾股定理表示出PQ,又等邊三角形的三條邊相等,代入整理即可得解.

連接PQ

∵△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBQ,∴△ABP≌△CBQ,△PBQ是等邊三角形,∴AP=QC

QAQC=ab,設(shè)QA=am,則QC=bm,∴AP=QC=bm

∵△PBQ是等邊三角形,∴∠BQP=60°,PQ=PB

∵∠AQB=150°,∴∠AQP=150°﹣60°=90°,∴△APQ是直角三角形,

根據(jù)勾股定理,PQ,

PB,∴PBQAam=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有0、10、2030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=15,點(diǎn)D是邊BC上一動點(diǎn)(不與B、C重合),ADE=B=α,DE交AC于點(diǎn)E,且tanα=有以下的結(jié)論: ADEACD; 當(dāng)CD=9時(shí),ACD與DBE全等; BDE為直角三角形時(shí),BD為12或 0<BE,其中正確的結(jié)論是___________(填入正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明到離家2.1千米的學(xué)校參加初三聯(lián)歡會,到學(xué)校時(shí)發(fā)現(xiàn)演出道具還放在家中,此時(shí)距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學(xué)校.已知李明騎自行車到學(xué)校比他從學(xué)校步行到家用時(shí)少20分鐘,且騎自行車的速度是步行速度的3倍.

(1)李明步行的速度(單位:米/)是多少?

(2)李明能否在聯(lián)歡會開始前趕到學(xué)校?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為直線BC上一動點(diǎn)(不與點(diǎn)BC重合),在AD的右側(cè)作△ACE,使得AE=AD,∠DAE=BAC,連接CE

1)當(dāng)D在線段上時(shí).

①求證:

②請判斷點(diǎn)D在何處時(shí),,并說明理由.

2)當(dāng)時(shí),若中最小角為28°,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

.(直接開平方法) (公式法)

(因式分解法) (4)(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面內(nèi),ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A0,3),B3,4),C2,2).

1)填空:∠ ABC   SABC   ;

2)畫出ABC關(guān)于x軸的對稱圖形A1B1C1,再畫出A1B1C1關(guān)于y軸的對稱圖形A2B2C2,x軸上作一點(diǎn)p,使pA,C兩點(diǎn)間的距離和最短;

3)若MABC內(nèi)一點(diǎn),其坐標(biāo)是(a,b),則A2B2C2中,點(diǎn)M的對應(yīng)點(diǎn)的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),其中,.

(1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對稱軸上的一個(gè)動點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案