【題目】如圖,已知中,,點(diǎn)以每秒1個(gè)單位的速度從向運(yùn)動(dòng),同時(shí)點(diǎn)以每秒2個(gè)單位的速度從向方向運(yùn)動(dòng),到達(dá)點(diǎn)后,點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.
(1)求點(diǎn)停止運(yùn)動(dòng)時(shí),的長(zhǎng);
(2) 兩點(diǎn)在運(yùn)動(dòng)過程中,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是否存在時(shí)間,使四邊形為菱形?若存在,求出此時(shí)的值;若不存在,請(qǐng)說明理由.
(3) 兩點(diǎn)在運(yùn)動(dòng)過程中,求使與相似的時(shí)間的值.
【答案】(1)(2)(3)或
【解析】
(1)求出點(diǎn)Q的從B到A的運(yùn)動(dòng)時(shí)間,再求出AP的長(zhǎng),利用勾股定理即可解決問題.
(2)如圖1中,當(dāng)四邊形PQCE是菱形時(shí),連接QE交AC于K,作QD⊥BC于D.根據(jù)DQ=CK,構(gòu)建方程即可解決問題.
(3)分兩種情形:如圖3-1中,當(dāng)∠APQ=90°時(shí),如圖3-2中,當(dāng)∠AQP=90°時(shí),分別構(gòu)建方程即可解決問題.
(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
∴AB==10,
點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),t==5,
∴AP=5,PC=1,
在Rt△PBC中,PB=.
(2)如圖1中,當(dāng)四邊形PQCE是菱形時(shí),連接QE交AC于K,作QD⊥BC于D.
∵四邊形PQCE是菱形,
∴PC⊥EQ,PK=KC,
∵∠QKC=∠QDC=∠DCK=90°,
∴四邊形QDCK是矩形,
∴DQ=CK,
∴,
解得t=.
∴t=s時(shí),四邊形PQCE是菱形.
(3)如圖2中,當(dāng)∠APQ=90°時(shí),
∵∠APQ=∠C=90°,
∴PQ∥BC,
∴,
∴,
∴.
如圖3中,當(dāng)∠AQP=90°時(shí),
∵△AQP∽△ACB,
∴,
∴,
∴,
綜上所述,或s時(shí),△APQ是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE與DC的交點(diǎn)為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
有這樣一個(gè)問題:關(guān)于x 的一元二次方程a x2+bx+c=0(a>0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:
①設(shè)一元二次方程ax2+bx+c=0(a>0)對(duì)應(yīng)的二次函數(shù)為y=ax2+bx+c(a>0);
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:
方程根的幾何意義:請(qǐng)將(2)補(bǔ)充完整
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個(gè) 不相等的負(fù)實(shí)根 | ||
_____ | ||
方程有兩個(gè) 不相等的正實(shí)根 | _____ | _____ |
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于﹣1,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,點(diǎn)P.Q分別是AB、AC上的動(dòng)點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到___時(shí),四邊形APDQ是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州火車南站廣場(chǎng)計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將連續(xù)的奇數(shù)1,3,5,7…按圖1中的方式排成一個(gè)數(shù)表,用一個(gè)十字框框住5個(gè)數(shù),這樣框出的任意5個(gè)數(shù)(如圖2)分別用a,b,c,d,x表示.
(1)若x=17,則a+b+c+d= .
(2)移動(dòng)十字框,用x表示a+b+c+d= .
(3)設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km的環(huán)湖越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如右上圖所示,根據(jù)圖中提供的信息,下列說法中錯(cuò)誤的有( )
①出發(fā)后1小時(shí),兩人行程均為10km; ②出發(fā)后1.5小時(shí),甲的行程比乙多2km;
③兩人相遇前,甲的速度小于乙的速度; ④甲比乙先到達(dá)終點(diǎn).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荔枝上市后,某水果店的老板用500元購(gòu)進(jìn)第一批荔枝,銷售完后,又用800元購(gòu)進(jìn)第二批荔枝,所購(gòu)件數(shù)是第一批購(gòu)進(jìn)件數(shù)的2倍,但每件進(jìn)價(jià)比第一批進(jìn)價(jià)少5元.
(1)求第一批荔枝每件的進(jìn)價(jià);
(2)若第二批荔枝以30元/件的價(jià)格銷售,在售出所購(gòu)件數(shù)的后,為了盡快售完,決定降價(jià)銷售,要使第二批荔枝的銷售利潤(rùn)不少于300元,剩余的荔枝每件售價(jià)至少多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com