【題目】已知拋物線C1:y=﹣x2+4x﹣3,把拋物線C1先向右平移3個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到拋物線C2, 將拋物線C1和拋物線C2這兩個(gè)圖象在x軸及其上方的部分記作圖象M.若直線y=kx+ (k≥0)與圖象M至少有2個(gè)不同的交點(diǎn),則k的取值范圍是________.
【答案】0≤k<10﹣
【解析】
首先配方得出二次函數(shù)頂點(diǎn)式,求得拋物線C1的頂點(diǎn)坐標(biāo),進(jìn)而利用二次函數(shù)平移規(guī)律得出拋物線C2,求得直線與兩個(gè)拋物線相切時(shí)的k的值,即可解決問題.
解:
y=-x2+4x-3
=-(x-2)2+1,
∴頂點(diǎn)(2,1)
則將拋物線y=-x2+4x-3先向右平移3個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,
得到的新的拋物線的解析式為:y=-(x-5)2+4=-x2+10x-21.
由消去y得到x2+(k-4)x+=0,由題意△=0,(k-4)2-14=0,
解得k=4-或4+(舍棄),
由 消去y得到x2+(k-10)x+=0,
由題意△=0,(k-10)2-86=0,
∴k=10-或10+(舍棄),
∵直線y=kx+(k≥0)與圖象M至少有2個(gè)不同的交點(diǎn),
觀察圖象可知,則k的取值范圍是0≤k<10-
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府在廣場(chǎng)上樹立了如圖所示的宣傳牌,數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)的知識(shí)測(cè)量宣傳牌的高度AB,在D處測(cè)得點(diǎn)A、B的仰角分別為38°、21°,已知CD=20m,點(diǎn)A、B、C在一條直線上,AC⊥DC,求宣傳牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,結(jié)果精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢驗(yàn)兩枚六個(gè)面分別刻有點(diǎn)數(shù)1、 2、3、4、5、6的正六面體骰子的質(zhì)量是否都合格,在相同的條件下,同時(shí)拋兩枚骰子20 00 0次,結(jié)果發(fā)現(xiàn)兩個(gè)朝上面的點(diǎn)數(shù)和是7的次數(shù)為20次.你認(rèn)為這兩枚骰子質(zhì)量是否都合格(合格標(biāo)準(zhǔn)為:在相同條件下拋骰子時(shí),骰子各個(gè)面朝上的機(jī)會(huì)相等)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)邊長(zhǎng)為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙O與BC相切于點(diǎn)C,⊙O與AC相交于點(diǎn)E,則CE的長(zhǎng)是:
A. B. C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)I是△ABC的內(nèi)心,延長(zhǎng)AI交⊙O于點(diǎn)D,交BC于點(diǎn)E,連接BD.
(1)線段BD與ID相等嗎?證明你的結(jié)論.
(2)證明:ID2=DEAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014浙江金華)如圖,矩形ABOD的兩邊OB,OD都在坐標(biāo)軸的正半軸上,OD=3,另兩邊與反比例函數(shù) (k≠0)的圖象分別相交于點(diǎn)E、F,且DE=2.過點(diǎn)E作EH⊥x軸于點(diǎn)H,過點(diǎn)F作FG⊥EH于點(diǎn)G.回答下面的問題:
(1)①求反比例函數(shù)的解析式.
②當(dāng)四邊形AEGF為正方形時(shí),求點(diǎn)F的坐標(biāo).
(2)小亮進(jìn)一步研究四邊形AEGF的特征后提出問題:“當(dāng)AE>EG時(shí),矩形AEGF與矩形DOHE能否全等?能否相似?”
針對(duì)小亮提出的問題,請(qǐng)你判斷這兩個(gè)矩形能否全等(直接寫出結(jié)論即可).這兩個(gè)矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,其對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則
y1>y2.其中說法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批乒乓球的質(zhì)量檢驗(yàn)結(jié)果如下:
抽取的乒乓球數(shù)n | 200 | 500 | 1000 | 1500 | 2000 |
優(yōu)等品頻數(shù)m | 188 | 471 | 946 | 1426 | 1898 |
優(yōu)等品頻率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)畫出這批乒乓球“優(yōu)等品”頻率的折線統(tǒng)計(jì)圖;
(2)這批乒乓球“優(yōu)等品”的概率的估計(jì)值是多少?
(3)從這批乒乓球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除顏色外都相同,將它們放入一個(gè)不透明的袋中.
①求從袋中摸出一個(gè)球是黃球的概率;
②現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個(gè)是黃球的概率不小于, 問至少取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個(gè)頂點(diǎn)分別在邊AB、AC上.
(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是多少?
(2)當(dāng)PQ的值為多少時(shí),這個(gè)矩形面積最大,最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com