【題目】如圖,將矩形ABCD的四個角向內翻折后,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是________ cm.
科目:初中數學 來源: 題型:
【題目】如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結論:
①CE=CF;
②線段EF的最小值為;
③當AD=2時,EF與半圓相切;
④若點F恰好落在B C上,則AD=;
⑤當點D從點A運動到點B時,線段EF掃過的面積是.
其中正確結論的序號是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面為某年11月的日歷:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
(1)在日歷上任意圈出一個豎列上相鄰的3個數;
①設中間的一個數為,則另外的兩個數為 、 ;
②若已知這三個數的和為42,則這三天都在星期 ;
(2)在日歷上用一個小正方形任意圈出其中的9個數,設圈出的9個數的中心的數為b,若這9個數的和為153,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀下面材料:
點A、B在數軸上分別表示實數a、b, A、B兩點之間的距離表示為AB,若a≥b,則 | a-b | = a-b;若a < b,則 | a-b | = b-a,當A、B兩點中有一點在原點時, 不妨設點A在原,
如圖甲, AB = OB =∣b∣=∣a b∣;當A、B兩點都不在原點時,
① 如圖乙,點A、B都在原點的右邊,AB=OBOA=|b||a|=ba =|ab |;
②如圖丙,點A、B都在原點的左邊, AB = OB OA =|b||a|= b (a) = |ab|;
③如圖丁,點A、B在原點的兩邊AB=OA+OB=|a|+|b|=a+(b) =|ab|.
綜上所述,數軸上A、B兩點之間的距離AB=∣ab∣.
(2)回答下列問題:
①數軸上表示1和3的兩點之間的距離是______,數軸上表示1和3的兩點之間的距離是______;
②數軸上表示x和1的兩點分別是點A和B,則A、B之間的距離表示為______,如果AB=2,那么x =________ ;
③當代數式∣x +1∣+∣x 3∣取最小值時,相應的x的取值范圍是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標為(-6,0).
(1)求此二次函數的表達式;
(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點坐標,把B、C兩點坐標代入二次函數的解析式就可解答;
(2)過點F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據S=S△BCE-S△BFE,求S與m之間的函數關系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數的表達式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點睛:本題考查了一元二次方程的解法,待定系數法求函數關系系,相似三角形的判定與性質,span>銳角三角函數的定義,割補法求圖形的面積,熟練掌握待定系數法求二次函數關系式、相似三角形的判定與性質是解答本題的關鍵.
【題型】解答題
【結束】
23
【題目】如圖(1),在平面直角坐標系中,點A(0,﹣6),點B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點C與點A重合.Rt△CDE沿y軸正方向平行移動,當點C運動到點O時停止運動.解答下列問題:
(1)如圖(2),當Rt△CDE運動到點D與點O重合時,設CE交AB于點M,求∠BME的度數.
(2)如圖(3),在Rt△CDE的運動過程中,當CE經過點B時,求BC的長.
(3)在Rt△CDE的運動過程中,設AC=h,△OAB與△CDE的重疊部分的面積為S,請寫出S與h之間的函數關系式,并求出面積S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校計劃在總費用元的限額內,租用汽車送名學生和名教師集體參加校外實踐活動,為確保安全,每輛汽車上至少要有名教師.現有甲、乙兩種大客車,它們的載客量和租金如下表所示.
(1)根據題干所提供的信息,確定共需租用多少輛汽車?
(2)請你給學校選擇一種最節(jié)省費用的租車方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,∠BAD=60°,BD是對角線,點E、F分別是邊AB、AD上兩個點,且滿足AE=DF,連接BF與DE相交于點G.
(1)如圖1,求∠BGD的度數;
(2)如圖2,作CH⊥BG于H點,求證:2GH=GB+DG;
(3)在滿足(2)的條件下,且點H在菱形內部,若GB=6,CH=4,求菱形ABCD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com