【題目】如圖①,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BC且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FP且EF=FP.
(1)在圖①中,通過(guò)觀察、測(cè)量,猜想直接寫(xiě)出AB與AP滿(mǎn)足的數(shù)量關(guān)系和位置關(guān)系,不要說(shuō)明理由;
(2)將三角板△EFP沿直線l向左平移到圖②的位置時(shí),EP交AC于點(diǎn)Q,連接AP、BQ.猜想寫(xiě)出BQ與AP滿(mǎn)足的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
【答案】(1)AB=AP且AB⊥AP,(2)BQ與AP所滿(mǎn)足的數(shù)量關(guān)系是AP=BQ,位置關(guān)系是AP⊥BQ
【解析】分析:(1)根據(jù)等腰直角三角形性質(zhì)得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2)求出CQ=CP,根據(jù)SAS證△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根據(jù)三角形內(nèi)角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可.
詳解:(1)AB=AP且AB⊥AP。理由如下:
∵AC⊥BC且AC=BC,∴△ABC為等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°.
又∵△ABC與△EFP全等,同理可證∠PEF=45°,
∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP.
(2)BQ與AP所滿(mǎn)足的數(shù)量關(guān)系是AP=BQ,位置關(guān)系是AP⊥BQ,理由如下:
延長(zhǎng)BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,
∴∠PQC=45°=∠QPC,∴CQ=CP.
∵∠ACB=∠ACP=90°,AC=BC,∴在△BCQ和△ACP中,
,
∴△BCQ≌△ACP(SAS),
∴AP=BQ,∠CBQ=∠PAC.
∵∠ACB=90°,∴∠CBQ+∠BQC=90°.
∵∠CQB=∠AQG,∴∠AQG+∠PAC=90°,
∴∠AGQ=180°﹣90°=90°,∴AP⊥BQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個(gè)送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測(cè)得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問(wèn):多長(zhǎng)時(shí)間后這個(gè)人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且A(0,3)、B(﹣4,0).
(1)求經(jīng)過(guò)點(diǎn)C的反比例函數(shù)的解析式;
(2)設(shè)P是(1)中所求函數(shù)圖象上一點(diǎn),以P、O、A頂點(diǎn)的三角形的面積與△COD的面積相等.求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的周長(zhǎng)為64,E、F、G分別為AB、AC、BC的中點(diǎn),A′、B′、C′分別為EF、EG、GF的中點(diǎn),△A′B′C′的周長(zhǎng)為_________.如果△ABC、△EFG、△A′B′C′分別為第1個(gè)、第2個(gè)、第3個(gè)三角形,按照上述方法繼續(xù)作三角形,那么第n個(gè)三角形的周長(zhǎng)是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(1,5),B(3,﹣1)兩點(diǎn),在x軸上取一點(diǎn)M,使AM﹣BM取得最大值時(shí),則M的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB及其內(nèi)部一點(diǎn)P,試討論以下問(wèn)題的解答:
(1)如圖①,若點(diǎn)P在∠AOB的平分線上,我們可以過(guò)P點(diǎn)作直線垂直于角平分線,分別交OA、OB于點(diǎn)C、D,則可以得到△OCD是以CD為底邊的等腰三角形;若點(diǎn)P不在∠AOB的平分線上(如圖②),你能過(guò)P點(diǎn)作直線,分別交OA、OB于點(diǎn)C、D,得到△OCD是等腰三角形,且CD是底邊嗎?請(qǐng)你在圖②中畫(huà)出圖形,并簡(jiǎn)要說(shuō)明畫(huà)法.
(2)若點(diǎn)P不在∠AOB的平分線上(如圖③),我們可以過(guò)P點(diǎn)作PQ∥OA,并作∠QPR=∠AOB,直線PR分別交OA、OB于點(diǎn)C、D,則可以得到△OCD是以OC為底的等腰三角形.請(qǐng)你說(shuō)明這樣作的理由.
(3)若點(diǎn)P不在∠AOB的平分線上,請(qǐng)你利用在(2)中學(xué)到的方法,在圖④中過(guò)P點(diǎn)作直線分別交OA、OB于點(diǎn)C、D,使得△OCD是等腰三角形,且OD是底邊.保留畫(huà)圖的痕跡,不用寫(xiě)出畫(huà)法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有七張正面分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個(gè)不相等的實(shí)數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象不經(jīng)過(guò)點(diǎn)(1,O)的概率是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com