已知:如圖,直線y=-x+3與x軸、y軸分別交于B、C,拋物線y=-x2+bx+c經(jīng)過點B、C,點A是拋物線與x軸的另一個交點.
(1)求B、C兩點的坐標和拋物線的解析式;
(2)若點P在線段BC上,且,求點P的坐標.

【答案】分析:(1)根據(jù)直線y=-x+3可分別令x=0,y=0求出C,B兩點的坐標;把B,C兩點的坐標分別代入拋物線y=-x2+bx+c
可求出b,c的值,從而求出函數(shù)的解析式.
(2)因為P在線段BC上,所以可設P點坐標為(x,-x+3),再利用三角形的面積公式及△ABC、△PAC、△PAB之間的關(guān)系即可求出x的值,從而求出P點坐標.
解答:解:(1)令x=0,則y=3,令y=0,則x=3,
故C(0,3)、B(3,0).
把兩點坐標代入拋物線y=-x2+bx+c得,,
解得
故拋物線的解析式為:y=-x2+2x+3;

(2)設P點坐標為(x,-x+3),
∵C(0,3)
∴S△PAC=S△ABC-S△PAB=S△PAB,
|AB|×3-|AB|×(-x+3)=×|AB|×(-x+3),
解得x=1,
故P(1,2).
點評:此題考查的是一次函數(shù)及二次函數(shù)圖象上點的坐標特征,屬比較簡單的題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知,如圖,直線y=
3
3
x+
3
與x軸、y軸分別交于A、B兩點,⊙M經(jīng)過精英家教網(wǎng)原點O及A、B兩點.
(1)求以OA、OB兩線段長為根的一元二方程;
(2)C是⊙M上一點,連接BC交OA于點D,若∠COD=∠CBO,寫出經(jīng)過O、C、A三點的二次函數(shù)的解析式;
(3)若延長BC到E,使DE=2,連接EA,試判斷直線EA與⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•岳陽)已知:如圖,直線MN和⊙O切于點C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,證明:n2=4mp;
(3)設⊙O的半徑為5,AC=6,求以AE、BF的長為根的一元二次方程;
(4)將直線MN向上平行移動至與⊙O相交時,m、n、p之間有什么關(guān)系?向下平行移動至與⊙O相離時,m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,直線y=kx+b經(jīng)過點A、B.
求:(1)這個函數(shù)的解析式;
(2)當x=4時,y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,直線y=kx+b與x軸交于點A,且與雙曲線y=
m
x
交于點B(4,2)和點C(n,-4). 
(1)求直線y=kx+b和雙曲線y=
m
x
的解析式;
(2)根據(jù)圖象寫出關(guān)于x的不等式kx+b<
m
x
的解集;
(3)點D在直線y=kx+b上,設點D的縱坐標為t(t>0).過點D作平行于x軸的直線交雙曲線y=
m
x
于點E.若△ADE的面積為
7
2
,請直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,直線a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步練習冊答案