【題目】已知等腰△ABC中,AD⊥BC于點(diǎn)D,且AD=BC,則△ABC底角的度數(shù)為( )
A.45°B.75°C.45°或75°D.60°
【答案】C
【解析】
根據(jù)題意畫出圖形,注意分別從∠BAC是頂角與∠BAC是底角去分析,然后利用等腰三角形與直角三角形的性質(zhì),即可求得答案:
如圖1:AB=AC,
∵AD⊥BC,∴BD=CD=BC,∠ADB=90°.
∵AD=BC,∴AD=BD. ∴∠B=45°.
即此時(shí)△ABC底角的度數(shù)為45°.
如圖2,AC=BC,
∵AD⊥BC,∴∠ADC=90°.
∵AD=BC,∴AD=AC,∴∠C=30°.∴∠CAB=∠B=(1800-∠A)÷2=75°.
即此時(shí)△ABC底角的度數(shù)為75°.
綜上所述,△ABC底角的度數(shù)為45°或75°.故選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏家2017年和2018年的家庭支出如下:
(1)2017年教育方面支出所占的百分比是多少?教育方面支出的金額是多少?
(2)2018年教育方面支出的金額是多少?教育方面支出對(duì)應(yīng)的扇形圓心角度數(shù)是多少?
(3)2018年教育方面支出的金額比2017年增加了還是減少了?變化了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王先生到泉州臺(tái)商投資區(qū)行政服務(wù)中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下:(單位:層)
+6,﹣3,+10,﹣8,+12,﹣7,﹣10.
(1)請(qǐng)你通過(guò)計(jì)算說(shuō)明王先生最后是否回到出發(fā)點(diǎn)1樓.
(2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.1度,根據(jù)王先生現(xiàn)在所處位置,請(qǐng)你算算,他辦事時(shí)電梯需要耗電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是弧CBD 上任意一點(diǎn),AH=2,CH=4.
(1)求⊙O 的半徑r 的長(zhǎng)度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點(diǎn)E,直線MH交⊙O 于點(diǎn) N,連接BN交CE于點(diǎn) F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶承包荒山若干畝種植果樹.2018年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售a元,在果園每千克售b元(b<a).該農(nóng)戶將水果運(yùn)到市場(chǎng)出售平均每天售出1000千克,需8人幫忙,每人每天付工資100元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)費(fèi)用平均每天200元.若只能選擇一種方式出售:
(1)分別用a,b表示兩種方式出售全部水果的收入;
(2)若a=2,b=1,且兩種出售水果方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過(guò)計(jì)算說(shuō)明選擇哪種出售方式收入較高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,點(diǎn),,,在同一條直線上,且,∠A=∠FDE,在①,②∠CBA=∠E,③∠C=∠F中,請(qǐng)選擇其中一個(gè)條件,證明△ABC≌△DEF.
(1)你選擇的條件是________(只需填寫序號(hào));
(2)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線c和直線b相較于點(diǎn),直線c過(guò)點(diǎn)平行于y軸的動(dòng)直線a的解析式為,且動(dòng)直線a分別交直線b、c于點(diǎn)D、在D的上方.
求直線b和直線c的解析式;
若P是y軸上一個(gè)動(dòng)點(diǎn),且滿足是等腰直角三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我國(guó)某大使館內(nèi)有一單杠支架,支架高2.8 m,在大使辦公樓前豎立著高28 m的旗桿,旗桿底部離大使辦公樓墻根的垂直距離為17 m,在一個(gè)陽(yáng)光燦爛的某一時(shí)刻,單杠支架的影長(zhǎng)為2.24 m,大使辦公室窗口離地面5 m,問(wèn)此刻中華人民共和國(guó)國(guó)旗的影子是否能達(dá)到大使辦公室的窗口?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com