閱讀下題的兩個(gè)解答過(guò)程,然后回答問(wèn)題:
如圖,已知AD與BC交于點(diǎn)O,且PC=PD,OA=OB,∠A=∠B.
求證:OP平分∠APB.
(解法一)證明:在△POA和△POB中,數(shù)學(xué)公式,∴△POA≌△POB(SAS)
∴∠OPA=∠OPB即OP平分∠APB
(解法二)證明:∵PC=PD…①
∴PC+AC=PD+BD即PA=PB…②
在△POA和△POB中數(shù)學(xué)公式…③∴△POA≌△POB(SSS)…④∴∠OPA=∠OPB即OP平分∠APB…⑤
問(wèn)題:(1)解法一:________ (填“正確”或“錯(cuò)誤”),若是錯(cuò)誤的,請(qǐng)你簡(jiǎn)述錯(cuò)誤的原因________;若正確,第二個(gè)空格不用回答.
(2)解法二:________(填“正確”或“錯(cuò)誤”),若正確,本題到此結(jié)束;
若不正確,在第________步開始出錯(cuò),錯(cuò)誤原因是________.
(3)請(qǐng)對(duì)解法二進(jìn)行更正,或者寫出其它正確的解法也可.

解:(1)故答案為:錯(cuò)誤,根據(jù)SSA不能推出兩三角形全等;

(2)故答案為:錯(cuò)誤,②,不知道AC=BD;

(3)在△PAD和△PBC中,

∴△PAD≌△PBC(AAS),
∴∠PDA=∠PCB,AD=BC,
∵OA=OB,
∴OC=OD,
在△PCO和△PDO中

∴△PCO≌△PDO(SAS),
∴∠DPO=∠CPO,
即OP平分∠APB.
分析:(1)全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)OA=OB,OP=OP,∠A=∠B(即SSA)不能推出兩三角形全等;
(2)等式的兩邊都加上相等的數(shù),所得的等式才成立,因?yàn)橛蒔D=PC不能推出PA=PB;
(3)根據(jù)AAS證△PAD≌△PBC,推出∠PDA=∠PCB,AD=BC,求出OC=OD,根據(jù)SAS證△PCO≌△PDO,推出∠DPO=∠CPO即可.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下題的兩個(gè)解答過(guò)程,然后回答問(wèn)題:
如圖,已知AD與BC交于點(diǎn)O,且PC=PD,OA=OB,∠A=∠B.
求證:OP平分∠APB.
(解法一)證明:在△POA和△POB中,
OA=OB
∠A=∠B
OP=OP
,∴△POA≌△POB(SAS)
∴∠OPA=∠OPB即OP平分∠APB
(解法二)證明:∵PC=PD…①
∴PC+AC=PD+BD即PA=PB…②
在△POA和△POB中
OA=OB
PA=PB
OP=OP
…③∴△POA≌△POB(SSS)…④∴∠OPA=∠OPB即OP平分∠APB…⑤
問(wèn)題:(1)解法一:
錯(cuò)誤
錯(cuò)誤
 (填“正確”或“錯(cuò)誤”),若是錯(cuò)誤的,請(qǐng)你簡(jiǎn)述錯(cuò)誤的原因
根據(jù)SSA不能推出兩三角形全等
根據(jù)SSA不能推出兩三角形全等
;若正確,第二個(gè)空格不用回答.
(2)解法二:
錯(cuò)誤
錯(cuò)誤
(填“正確”或“錯(cuò)誤”),若正確,本題到此結(jié)束;
若不正確,在第
步開始出錯(cuò),錯(cuò)誤原因是
不知道AC=BD
不知道AC=BD

(3)請(qǐng)對(duì)解法二進(jìn)行更正,或者寫出其它正確的解法也可.

查看答案和解析>>

同步練習(xí)冊(cè)答案