(7分)如圖,在梯形ABCD中,AD∥BC,AC、BD是對角線.過點D作DE
∥AC,交BC的延長線于點E.
(1)判斷四邊形ACED的形狀并證明;
(2)若AC=DB,求證:梯形ABCD是等腰梯形.
解:(1)四邊形ACED是平行四邊形.……………………………………1分
證明:∵AD∥BC,DE∥AC,
∴四邊形ACED是平行四邊形. …………………………………3分
(2)證明:由(1)知四邊形ACED是平行四邊形,
∴AC=DE.
∵AC=DB,
∴DE=DB.
∴∠E=∠DBC.    ………………………………………………4分
∵DE∥AC,
∴∠E=∠ACB.∴∠ACB=∠DBC.………………………………5分
又∵AC=DB,BC=CB,
∴△ABC≌△DCB.  ………………………………………………6分
∴AB=DC(或∠ABC=∠DCB).
∴梯形ABCD是等腰梯形.…………………………………………7分
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,若再加上一個條件___________,則可得梯形ABCD是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形中,分別為的中點,則線段       
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖1所示,將矩形紙片先沿虛線AB按箭頭方向向右對折,接著將對折后的紙片沿虛線CD向下對折,然后剪下一個小三角形,再將紙片打開,則打開后的展開圖是

           
A.        B.              C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(9分)如圖所示,在邊長為1的正方形ABCD中,一直角三角尺PQR的直角頂點P在對角線AC上移動,直角邊PQ經(jīng)過點D,另一直角邊與射線BC交于點E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當點P落在AC的何處時,△PBE的面積最大,此時最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題6分)如圖,四邊形是正方形,點上,,垂足為,請你在上確定一點,使,請你寫出兩種確定點G的方案,并寫出其中一種方案的具體作法和證明

方案

 

 
一:                                             ;

方案

 

 
二:(1)作法:

(2) 證明:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在四邊形ABFC中,=90°,的垂直平分線EF交BC于點D,交AB于點E,且CF=AE.
(1)求證:四邊形BECF是菱形;
(2)當的大小為多少度時,四邊形BECF是正方形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題12分)
如圖,AD//BC,點E、F在BC上,∠1=∠2,AF⊥DE,垂足為點O.
(1)求證:四邊形AEFD是菱形;
(2)若BE=EF=FC,求∠BAD+∠ADC的度數(shù);
(3)若BE=EF=FC,設(shè)AB = m,CD = n,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分8分)如圖,O是菱形ABCD對角線的交點,作DE∥AC,CE∥BD,DE、CE交于點E,四邊形OCED是矩形嗎?證明你的結(jié)論。

查看答案和解析>>

同步練習冊答案