如圖,在直角坐標系中,平行四邊形AOCD的邊OC在x軸上,邊AD與y軸交于點H,CD=10,sin∠OCD=.點E、F分別是邊AD和對角線OD上的動點(點E不與A、D重合),∠OEF=∠A=∠DOC,設AE=t,OF=s.
(1)求直線DC的解析式;
(2)求s關于t的函數(shù)關系式,并寫出t的取值范圍;
(3)點E在邊AD上移動的過程中,△OEF是否有可能成為一個等腰三角形?若有可能,請求出t的值;若不可能,請說明理由.

【答案】分析:(1)因為四邊形AOCD是平行四邊形,根據(jù)題意求出sin∠OCD=sin∠OAH的值.然后根據(jù)勾股定理求出AH的值.又因為
∠A=∠DOC,AD∥OC,可推出AH=HD,AD=OC.求出C,D的坐標后設直線DC的解析式為y=kx+b代入已知坐標得出解析式;
(2)已知OA=OD,可得出OF=S.求出FD,AE和DE的表達式之后推出△AEO∽△DFE根據(jù)線段的相似比求出s=-t+10(0<t<12);
(3)根據(jù)題意,要分為兩種情況解答.當OF=EF,求得EO=ED,故可得出(t-6)2+64=(12-t)2求出t的值;當OE=EF時,即==1,易求t值.
解答:解:(1)∵AOCD是平行四邊形
∴AO=DC=10,∠A=∠OCD
∴sin∠OCD=sin∠OAH=
∴OH=OA•sin∠A=10×=8
∴AH===6
又∵∠A=∠DOC,AD∥OC,
∴∠DOC=∠ADO,
∴∠A=∠ADO,OH⊥AD,
∴AH=HD=6,
∴AD=OC=12,
∴D(6,8)、C(12,O).
設直線DC的解析式為y=kx+b可得
-6k=8.k=-.b=16.
∴y=-x+16;(4分)

(2)∵OA=OD=10,
∵OF=S,
∴FD=10-S,AE=t,DE=12-t
又∵∠OEF=∠EDF.
∴∠AEO+∠FED=180°-∠OEF,∠DEF+∠EFD=180°-∠EDF.
∴∠AEO=∠EFD,∠A=∠EDF,
∴△AEO∽△DFE,
=
=,100-10s=12t-t2
∴s=-t+10(0<t<12);(3分)

(3)∠OFE>∠FDE=∠OEF.
∴OF≠OE.(1分)
∴△OEF是等腰三角形,則只有①OF=EF②OE=EF
①當OF=EF時.
∴∠OEF=∠EOF=∠EDO,∴EO=ED.即(t-6)2+64=(12-t)2,t=(2分)
②當OE=EF時
==1即OA=DE.12-t=10,t=2.
∴當t=或t=2時△OEF是等腰三角形.(2分)
點評:本題難度較大,主要是考查圖形,三角函數(shù)以及一次函數(shù)綜合的知識.本題很典型,在考試中考生應學會總結(jié)問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案