【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線段BC、AB上,∠EFB=60°,DC=EF

1)求證:四邊形EFCD是平行四邊形;

2)若BF=EF,求證:AE=AD

【答案】

1】(1)證明:△ABC是等邊三角形

∴∠B=60

∵∠EFB=60,∴∠B=∠EFB,∴EF∥DC……………………2

∵DC=EF,四邊形EFCD是平行四邊形…………4

2】(2)連接BE

∵BF=EF,∠EFB=60

∴△EFB是等邊三角形,∴EB=EF,∠EBF=60………………6

∵DC=EF,∴EB=DC

∵△ABC是等邊三角形,∴∠ACB=60AB=AC

∴∠EBF=∠ACB………………8

∴△AEB≌△ADC,∴AE=AD………………10

【解析】試題分析:(1)由△ABC是等邊三角形得到∠B=60°,而∠EFB=60°,由此可以證明EF∥DC,而DC=EF,然后即可證明四邊形EFCD是平行四邊形;

2)如圖,連接BE,由BF=EF,∠EFB=60°可以推出△EFB是等邊三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又

△ABC是等邊三角形,所以得到∠ACB=60°,AB=AC,然后即可證明△AEB≌△ADC,利用全等三角形的性質(zhì)就證明AE=AD

試題解析:(1∵△ABC是等邊三角形,

∴∠ABC=60°,

∵∠EFB=60°,

∴∠ABC=∠EFB

∴EF∥DC(內(nèi)錯(cuò)角相等,兩直線平行),

∵DC=EF,

四邊形EFCD是平行四邊形;

2)連接BE

∵BF=EF,∠EFB=60°,

∴△EFB是等邊三角形,

∴EB=EF∠EBF=60°

∵DC=EF,

∴EB=DC,

∵△ABC是等邊三角形,

∴∠ACB=60°,AB=AC,

∴∠EBF=∠ACB,

∴△AEB≌△ADC,

∴AE=AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)D為△ABCBC的延長(zhǎng)線上一點(diǎn).

(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度數(shù);

(2)若∠ABC的角平分線與∠ACD的角平分線交于點(diǎn)M,過(guò)點(diǎn)CCPBM于點(diǎn)P

求證: ;

(3)在(2)的條件下,將△MBC以直線BC為對(duì)稱軸翻折得到△NBC,∠NBC的角平分線與∠NCB的角平分線交于點(diǎn)Q(如圖2),試探究∠BQC與∠A有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(7分)某學(xué)校舉行演講比賽,選出了10名同學(xué)擔(dān)任評(píng)委,并事先擬定從如下4個(gè)方案中選擇合理的方案來(lái)確定每個(gè)演講者的最后得分(滿分為10分):

方案1:所有評(píng)委所給分的平均數(shù),

方案2:在所有評(píng)委所給分中,去掉一個(gè)最高分和一個(gè)最低分.然后再計(jì)算其余給分的l平均數(shù).

方案3:所有評(píng)委所給分的中位效.

方案4:所有評(píng)委所給分的眾數(shù).

為了探究上述方案的合理性.先對(duì)某個(gè)同學(xué)的演講成績(jī)進(jìn)行了統(tǒng)計(jì)實(shí)驗(yàn).下面是這個(gè)同學(xué)的得分統(tǒng)計(jì)圖:

(1)分別按上述4個(gè)方案計(jì)算這個(gè)同學(xué)演講的最后得分;

(2)根據(jù)(1)中的結(jié)果,請(qǐng)用統(tǒng)計(jì)的知識(shí)說(shuō)明哪些方案不適臺(tái)作為這個(gè)同學(xué)演講的最后得分,并給出該同學(xué)的最后得分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,∠A=80°,∠B=40°,DE分別是AB,AC上的點(diǎn),DEBCAED的度數(shù)為( 。

A. 40° B. 60° C. 80° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點(diǎn)P,Q同時(shí)分別從A,D兩點(diǎn)出發(fā),以1cm/s速度沿AF,DC向中點(diǎn)F,G運(yùn)動(dòng).連接PB,QE,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求證:四邊形PEQB為平行四邊形;
(2)填空: ①當(dāng)t=s時(shí),四邊形PBQE為菱形;
②當(dāng)t=s時(shí),四邊形PBQE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE分成兩部分;

(1)直接寫出圖中的對(duì)頂角為 的鄰補(bǔ)角為 ;

(2)若,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)連接BE交AC于點(diǎn)F,若cos∠CAD= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一直徑是 米的圓形鐵皮,現(xiàn)從中剪出一個(gè)圓周角是90°的最大扇形ABC,則:
(1)AB的長(zhǎng)為米;
(2)用該扇形鐵皮圍成一個(gè)圓錐,所得圓錐的底面圓的半徑為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題

(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?

(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定: 這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯。若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案