【題目】如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)M在△ABC內(nèi),AM平分∠BAC.點(diǎn)E與點(diǎn)M在AC所在直線的兩側(cè),AE⊥AB,AE=BC,點(diǎn)N在AC邊上,CN=AM,連接ME,BN.
(1)補(bǔ)全圖形;
(2)求ME:BN的值;
(3)問:點(diǎn)M在何處時(shí)BM+BN取得最小值?確定此時(shí)點(diǎn)M的位置,并求此時(shí)BM+BN的最小值.
【答案】(1)補(bǔ)圖見解析;(2)ME:BN=1;(3)當(dāng)點(diǎn)M在∠BAC的平分線上運(yùn)動到它與BE的交點(diǎn)處時(shí),BM+BN取得最小值,為.
【解析】
(1)根據(jù)題意補(bǔ)全圖形;
(2)延長AM交BC于點(diǎn)D,證明△AME≌△CNB,根據(jù)全等三角形的性質(zhì)得到ME=BN,得到答案;
(3)根據(jù)ME=BN,得到BM+BN=BM+ME,根據(jù)兩點(diǎn)之間線段最短、勾股定理計(jì)算即可.
(1)補(bǔ)全圖形見圖1:
(2)如圖2,延長AM交BC于點(diǎn)D,
∵AB=AC,AM平分∠BAC,
∴∠CAD=∠BAD,AD⊥BC,
∵AE⊥AB,
∴∠MAE+∠BAD=90°,
∵AD⊥BC,
∴∠C+∠CAD=90°,
∴∠MAE=∠C,
在△AME和△CNB中,
,
∴△AME≌△CNB(SAS),
∴ME=BN,
∴ME:BN=1;
(3)∵ME=BN,
∴BM+BN=BM+ME,
∴當(dāng)點(diǎn)M在∠BAC的平分線上運(yùn)動到它與BE的交點(diǎn)處時(shí),BM+BN取得最小值,
∵AB=AC=5,BC=6,
∴AE=BC=6,
∴BE= ,
∴BM+BN的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),的三個(gè)頂點(diǎn)的分別為,,(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)在網(wǎng)格內(nèi)畫出向下平移2個(gè)單位長度得到的,點(diǎn)的坐標(biāo)是________;
(2)以點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出,使與位似,且位似比為,點(diǎn)的坐標(biāo)是________;
(3)的面積是________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)A為⊙0外一點(diǎn),過A作⊙O的切線與⊙O相切于點(diǎn)P,連接PO并延長至圓上一點(diǎn)B連接AB交⊙O于點(diǎn)C,連接OA交⊙O于點(diǎn)D連接DP且∠OAP=∠DPA。
(1)求證:PO=PD
(2)若AC=,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點(diǎn)C,連接AC,OD交于點(diǎn)E.
(1)證明:OD∥BC;
(2)若AD是⊙O的切線,連接BD交于⊙O于點(diǎn)F,連接EF,且OA=1,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AE是△ABC的角平分線.AE的垂直平分線交AB于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若AC=2,tanB,求⊙O的半徑r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個(gè)小正方形的邊長均為 1,線段 AB 的端點(diǎn) A、B 均在小正方形的頂點(diǎn)上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點(diǎn) C 在小正方形頂點(diǎn)上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點(diǎn) D在小正方形的頂點(diǎn)上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)為A(-3,-3),此拋物線交x軸于O、 B兩點(diǎn).
(1)求此拋物線的解析式.
(2)求△AOB的面積 .
(3)若拋物線上另有點(diǎn)P滿足S△POB=S△AOB,請求出P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中有1個(gè)白球和2個(gè)紅球,這些球除顏色外都相同.
⑴如果從盒子中隨機(jī)摸出1個(gè)球,摸出紅色球的概率為_____________;
⑵若從盒子中隨機(jī)摸出一個(gè)球,記下顏色后放回,再從中隨機(jī)摸出一個(gè)球,請通過列表或畫樹狀圖的方法,求兩次摸到不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“第二十屆中國哈爾濱冰雪大世界”主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計(jì)圖:
(1)本次調(diào)查共抽取了多少名學(xué)生;
(2)通過計(jì)算補(bǔ)全條形圖;
(3)若該學(xué)校共有名學(xué)生,請你估計(jì)該學(xué)校選擇“比較了解”項(xiàng)目的學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com