【題目】一個正方體的六個面上分別標有1、2、3、4、5、6,根據(jù)圖中從各個方向看到的數(shù)字,解答下面的問題:“?”處的數(shù)字是_____.
【答案】1
【解析】
根據(jù)正方體的特征,已知1和2,3,4,5相鄰,3和1,2,5,6相鄰;
根據(jù)以上分析可得1 和6相對, 3和4相對, 從而可知2和5相對, 再結合左面兩個圖, 即可得出“?” 處的數(shù)字.
解:根據(jù)正方體的特征知, 相鄰的面一定不是對面,因為1和2,3,4,5相鄰,
所以只能和6相對.因為3和1, 2, 5, 6相鄰, 只能和4相對,又因為3和4已經(jīng)相對了,
所以只能是2和5相對, 即面 “1” 與面 “6” 相對, 面 “2” 與面“5” 相
對, “3” 與面 “4” 相對, 即1對6, 2對5,3對4.因此第三個正方體下面是2, 左面是
4, “?” 處只能是1和6,結合左面兩個圖看,應為1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,以AB所在的直線為x軸,以AD所在的直線為y軸建立平面直角坐標系反比例函數(shù)的圖象與CD交于E點,與CB交于F點.
(1)求證:;
(2)若的面積為6,求反比例函數(shù)的解析式;
(3)在(2)的條件下,將沿x軸的正方向平移1個單位后得到,如圖2,線段與相交于點M,線段與BC相交于點N.求與正方形ABCD的重疊部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:如圖(1),在數(shù)軸上A示的數(shù)為a,B點表示的數(shù)為b,則點A到點B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB=b-a.
解決問題:如圖(2),數(shù)軸上點A表示的數(shù)是-4,點B表示的數(shù)是2,點C表示的數(shù)是6.
(1)若數(shù)軸上有一點D,且AD=3,求點D表示的數(shù);
(2)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和3個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.求點A表示的數(shù)(用含t的代數(shù)式表示),BC等于多少(用含t的代數(shù)式表示).
(3)請問:3BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.
(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副三角尺的直角頂點疊放在點C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù);(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y= x2﹣ x﹣2與x軸交于A,B兩點(點A在點B的右邊),與y軸交于點C.
(1)求點A,B,C的坐標;
(2)點D是此拋物線上的點,點E是其對稱軸上的點,求以A,B,D,E為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點P,使得△ACP是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com