如圖矩形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、C兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,5).
(1)直接寫出B點(diǎn)坐標(biāo);
(2)若過點(diǎn)C的直線CD交AB邊于點(diǎn)D,且把矩形OABC的周長分為1:3兩部分,求直線CD的解析式.
(1)B點(diǎn)坐標(biāo)為(3,5).

(2)∵過點(diǎn)C的直線CD交AB邊于點(diǎn)D,且把矩形OABC的周長分為1:3兩部分,
OC=AB>BD,OA=BC,
則一定有:
CB+BD
CO+OA+AB-BD
=
1
3

3+BD
13-BD
=
1
3
,
解得BD=1,
∴AD=AB-BD=5-1=4,
即D點(diǎn)的坐標(biāo)為(3,4),
設(shè)直線CD的關(guān)系式為y=kx+b,且經(jīng)過(0,5)和(3,4)得,
b=5
3k+b=4
,
解之得
k=-
1
3
b=5
,
即直線CD的關(guān)系式為:y=-
1
3
x+5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩人同時(shí)登云霧山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,若乙提速后乙的速度是甲的3倍,從甲、乙相距100米到乙追上甲時(shí),甲、乙兩人一共攀登了______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)坐標(biāo)為O(0,0),A(2
3
,0),B(2
3
,2),把矩形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)α度,使點(diǎn)B正好落在y軸正半軸上,得到矩形OA1B1C1
(1)求角α的度數(shù);
(2)求直線A1B1的函數(shù)關(guān)系式,并判斷直線A1B1是否經(jīng)過點(diǎn)B,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

水庫的庫容通常是用水位的高低來預(yù)測的.下表是某市一水庫在某段水位范圍內(nèi)的庫容與水位高低的相關(guān)水文資料,請根據(jù)表格提供的信息回答問題.
水位高低x(單位:米)10203040
庫容y(單位:萬立方米)3000360042004800
(1)將上表中的各對數(shù)據(jù)作為坐標(biāo)(x,y),在給出的坐標(biāo)系中用點(diǎn)表示出來:
(2)用線段將(1)中所畫的點(diǎn)從左到右順次連接.若用此圖象來模擬庫容y與水位高低x的函數(shù)關(guān)系.根據(jù)圖象的變化趨勢,猜想y與x間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢十分嚴(yán)峻,上級要求該水庫為其承擔(dān)部分分洪任務(wù)約800萬立方米.若該水庫當(dāng)前水位為65米,且最高水位不能超過79米.請根據(jù)上述信息預(yù)測:該水庫能否承擔(dān)這項(xiàng)任務(wù)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)的圖象y=kx+b與兩坐標(biāo)軸圍成的三角形的面積是8,且過點(diǎn)(0,2),求此一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:
在平面直角坐標(biāo)系中,已知x軸上兩點(diǎn)A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點(diǎn),我們可以通過構(gòu)造直角三角形來求AB間距離.
如圖,過A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點(diǎn),在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意兩點(diǎn)[A(x1,y1),B(x2,y2)]間距離公式為:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,點(diǎn)A(1,-3),B(-2,1)之間的距離為______;
(2)平面直角坐標(biāo)系中的兩點(diǎn)A(1,3)、B(4,1),P為x軸上任一點(diǎn),當(dāng)PA+PB最小時(shí),直接寫出點(diǎn)P的坐標(biāo)為______,PA+PB的最小值為______;
(3)應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l與x軸交于點(diǎn)A(-1.5,0),與y軸交于點(diǎn)B(0,3)
(1)求直線l的解析式;
(2)過點(diǎn)B作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩車先后都以60km/h的速度從M地將一批物品運(yùn)往N地.兩車出發(fā)后,發(fā)貨站發(fā)現(xiàn)甲車遺漏一件物品,遂派丙車將遺漏物品送達(dá)甲車.丙車完成任務(wù)后,即沿原路返回(物品交接時(shí)間忽略不計(jì)).如圖表示三輛車離M地的距離s(km)隨時(shí)間t(min)變化的圖象.
請根據(jù)圖象進(jìn)行以下探究:
信息讀取
(1)說明圖象中點(diǎn)B的實(shí)際意義;
圖象理解
(2)甲車出發(fā)多長時(shí)間后被丙車追上?此時(shí)追及點(diǎn)距M地多遠(yuǎn)?
問題解決
(3)丙車與乙車在距離M地多遠(yuǎn)處迎面相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
3
4
x+6
與x軸、y軸交于A、B兩點(diǎn),M是直線AB上的一個(gè)動(dòng)點(diǎn),MC⊥x軸于C,MD⊥y軸于D,若點(diǎn)M的橫坐標(biāo)為a.
(1)當(dāng)點(diǎn)M在線段AB上運(yùn)動(dòng)時(shí),用a的代數(shù)式表示四邊形OCMD的周長;
(2)在(1)的條件下,求四邊形OCMD面積的最大值;
(3)以M為圓心MD為半徑的⊙M與以A為圓心AC為半徑的⊙A相切時(shí),求a的值.

查看答案和解析>>

同步練習(xí)冊答案