(2011?黑河)如圖,A、B、C、D是⊙O上的四個點,AB=AC,AD交BC于點E,AE=3,ED=4,則AB的長為().
可證明△ABE∽△ADB,則,則AB2=AD?AE,由AE=3,ED=4,再求AB就容易了.
解:∵AB=AC,
∴∠ABE=∠ACE,
∴∠ACE=∠ADB(圓周角定理),
∴△ABE∽△ADB,則,
即AB2=AD?AE,
∵AE=3,ED=4,
∴AD=7,
∴AB=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·永州)(本題滿分10分)如圖,AB是半圓O的直徑,點C是⊙O上一點
(不與A,B重合),連接AC,BC,過點O作OD∥AC交BC于點D,在OD的延長線上
取一點E,連接EB,使∠OEB=∠ABC.
⑴ 求證:BE是⊙O的切線;
⑵ 若OA=10,BC=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖, AB 為⊙ O 的直徑, CD 為弦, AB ⊥ CD ,如果∠BOC = 70 ,那么∠A的度數(shù)為
A 70 C . 30 B . 35 D . 20

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某商標是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結果保留二位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011?德州)母線長為2,底面圓的半徑為1的圓錐的側面積為  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·湖州)(本小題8分)
如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2。
⑴求OE和CD的長;
⑵求圖中陰影部隊的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2007•連云港)如圖,將半徑為2cm的圓形紙片折疊后,圓弧恰好經(jīng)過圓心O,則折痕AB的長為(  )
A.2cmB.cmC.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,,點C在上,且點C不與A、B重合,則的度數(shù)為(    )

A.    B.     C.     D. 或

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·西寧)(本小題滿分10分)已知:如圖,BD為⊙O的直徑,ABAC,ADBCE,AE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案