【題目】已知二次函數(shù)yax2+bx+c的圖象如圖所示.

1)對(duì)稱軸方程為   

2)當(dāng)x   時(shí),yx的增大而減;

3)求函數(shù)解析式.

【答案】1x1;(2)≤1;(3

【解析】

1)由圖象可知,函數(shù)的對(duì)稱軸為x1;

2)由圖象可知,在對(duì)稱軸的左側(cè),yx的增大而減;

3)設(shè)函數(shù)解析為yax+1)(x3),將點(diǎn)(0,﹣2)代入即可.

解:(1)由圖象可知,函數(shù)的對(duì)稱軸為x1,

故答案為x1;

2)由圖象可知,在對(duì)稱軸的左側(cè),yx的增大而減;

故答案為x1;

3)函數(shù)經(jīng)過點(diǎn)(﹣1,0),(3,0),(0,﹣2),

設(shè)函數(shù)解析為yax+1)(x3),

將點(diǎn)(0,﹣2)代入有﹣3a=﹣2,

a ,

∴函數(shù)解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:[ab,c]為二次函數(shù)y=ax2+bx+ea≠0,ab,c為實(shí)數(shù))的圖象數(shù),如:y=-x2+2x+3圖象數(shù)[-1,2,3]

1)二次函數(shù)y=x2-x-1圖象數(shù)

2)若圖象數(shù)[m,m+1m+1]的二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(m-1)x2-x-2=0.

(1)當(dāng)m為何實(shí)數(shù)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

(2)若x1,x2是方程的兩個(gè)根,且xx2+x1x=-,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2-4x+3x軸交于點(diǎn)A 、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)求直線BC的表達(dá)式;

(2)垂直于y軸的直線l與拋物線交于點(diǎn) ,與直線BC交于點(diǎn),若x1<x2<x3,結(jié)合函數(shù)的圖象,求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax2+bx+c經(jīng)過點(diǎn)(﹣2,0),且對(duì)稱軸為直線x1,其部分圖象如圖所示.對(duì)于此拋物線有如下四個(gè)結(jié)論:

ac0;16a+4b+c0mn0,則x1+m時(shí)的函數(shù)值大于x1n時(shí)的函數(shù)值;點(diǎn)(﹣0)一定在此拋物線上.其中正確結(jié)論的序號(hào)是( 。

A. ①②B. ②③C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)P是直線BC上的一點(diǎn),連接AP,將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PE,連接CE

1)如圖1,點(diǎn)P在線段CB的延長(zhǎng)線上.

請(qǐng)根據(jù)題意補(bǔ)全圖形;

用等式表示BPCE的數(shù)量關(guān)系,并證明.

2)若點(diǎn)P在射線BC上,直接寫出CECP,CD三條線段的數(shù)量關(guān)系為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如1,△ABC中,BA=BCD是平面內(nèi)不與A、B、C重合的任意一點(diǎn),∠ABC=DBEBD=BE

1)求證:ABD≌△CBE

2)如圖2,當(dāng)點(diǎn)DABC的外接圓圓心時(shí):

①請(qǐng)判斷四邊形BDCE的形狀,并證明你的結(jié)論

②當(dāng)∠ABC為多少度時(shí),點(diǎn)E在圓D上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P△ABC形內(nèi)一點(diǎn),且∠APB=∠APC=135°

1)求證:△CPA∽△APB

2)試求tan∠PCB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案