【題目】如圖,坐標(biāo)平面上,△ABC≌△DEF全等,其中A、B、C的對應(yīng)頂點(diǎn)分別為D、E、F,且AB=BC,若A、B、C的坐標(biāo)分別為(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E兩點(diǎn)在y軸上,則F點(diǎn)到y(tǒng)軸的距離為 .
【答案】4
【解析】
試題分析:根據(jù)點(diǎn)A、B、C的坐標(biāo)求出點(diǎn)A到BC的距離,再根據(jù)全等三角形對應(yīng)邊上的高相等求出點(diǎn)D到EF的距離,然后根據(jù)等腰三角形兩腰上的高相等解答.
解:∵A、B、C的坐標(biāo)分別為(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),
∴點(diǎn)A到BC的距離為1﹣(﹣3)=4,
∵△ABC≌△DEF,
∴點(diǎn)D到EF的距離等于點(diǎn)A到BC的距離,為4,
∵AB=BC,△ABC≌△DEF,
∴DE=EF,
∴點(diǎn)F到DE的距離等于點(diǎn)D到EF的距離,為4.
故答案為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,5)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列三條線段中(單位長度都是cm),能組成三角形的是( )
A. 3,4,9 B. 50,60,12 C. 11,11,31 D. 20,30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A(m,﹣2)、B(1,n﹣m)關(guān)于x軸對稱,則m、n的值為( 。
A. m=1,n=1 B. m=﹣1,n=1 C. m=1,n=3 D. m=1,n=﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2mx+m2﹣m=o有兩個實(shí)數(shù)根a、b;
(1)求實(shí)數(shù)m的取值范圍;
(2)求代數(shù)式a2+b2﹣3ab的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著居民經(jīng)濟(jì)收入的不斷提高以及汽車業(yè)的快速發(fā)展,家用汽車已越來越多地進(jìn)入普通家庭,抽樣調(diào)查顯示,截止2015年底某市汽車擁有量為16.9萬輛.己知2013年底該市汽車擁有量為10萬輛,設(shè)2013年底至2015年底該市汽車擁有量的平均增長率為x,根據(jù)題意列方程得( )
A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購進(jìn)一種化工原料若干千克,價格為每千克30元,物價部門規(guī)定其銷售單價每千克不高于60元且不低于30元,經(jīng)市場調(diào)查發(fā)現(xiàn),日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當(dāng)x=60時,y=80,當(dāng)x=50時,y=100.
(1)求y與x的函數(shù)解析式;
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)解析式;
(3)求當(dāng)銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某企業(yè)向雅安地震災(zāi)區(qū)捐助價值26萬元的甲、乙兩種帳篷共300頂.已知甲種帳篷每頂800元,乙種帳篷每頂1000元,問甲、乙兩種帳篷各多少頂?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到平面上不共線的三點(diǎn)A,B,C的距離相等的點(diǎn)( 。
A. 只有一個 B. 有兩個
C. 有三個或三個以上 D. 一個或沒有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com