【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
【答案】(1)30°;(2)文化墻PM不需要拆除.
【解析】
試題分析:(1)由新坡面的坡度為1:,可得tanα=tan∠CAB==,然后由特殊角的三角函數(shù)值,求得答案;
(2)首先過點C作CD⊥AB于點D,由坡面BC的坡度為1:1,新坡面的坡度為1:.即可求得AD,BD的長,繼而求得AB的長,則可求得答案.
試題解析:(1)∵新坡面的坡度為1:,∴tanα=tan∠CAB==,∴∠α=30°.
答:新坡面的坡角a為30°;
(2)文化墻PM不需要拆除.
過點C作CD⊥AB于點D,則CD=6,∵坡面BC的坡度為1:1,新坡面的坡度為1:,∴BD=CD=6,AD=,∴AB=AD﹣BD=<8,∴文化墻PM不需要拆除.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種計算機每秒可做4×108次運算,它工作2×104秒運算的次數(shù)為( 。
A.8×109
B.8×1010
C.8×1011
D.8×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件中:
①∠B+∠BCD=180°;
②∠1=∠2;
③∠3=∠4;
④∠B=∠5.
能判定AB∥CD的條件個數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖□ABCD的對角線ACBD交于點O,平分∠BAD交BC于點E,且∠ADC=600,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°,②S□ABCD=ABAC,③OB=AB,④OE=BC,成立的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com