【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

【答案】C

【解析】

A選項,∵在△ABC中,點DBC上,DE∥AC,DF∥AB,

∴DE∥AF,DF∥AE,

四邊形AEDF是平行四邊形;即A正確;

B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,

四邊形AEDF是矩形;即B正確;

C選項因為添加條件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;

D選項因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AD BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點 E,過點 E EFAC,分別交 AB、AD 于點 F、G.則下列結(jié)論:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正確的有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)ykx+1y=﹣k≠0)的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的解題過程,再解答問題:

如圖,已知ABCD,∠B40°,∠D30°,求∠BED的度數(shù).

解:過點EEFAB,則ABCDEF

因為EFAB,所以∠1=∠B40°

又因為CDEF,所以∠2=∠D30°

所以∠BED=∠1+240°+30°=70°.

如圖是小軍設(shè)計的智力拼圖玩具的一部分,現(xiàn)在小軍遇到兩個問題,請你幫他解決:

1)如圖B45°,∠BED75°,為了保證ABCD,∠D必須是多少度?請寫出理由.

2)如圖,當(dāng)∠G、∠GFP、∠P滿足什么關(guān)系時,GHPQ,請直接寫出滿足關(guān)系的式子,并在如圖中畫出需要添加的輔助線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.

(1)填空:的值為 , 的值為

(2)觀察反比函數(shù)的圖像,當(dāng)時,請直接寫出自變量的取值范圍;

(3)以為邊作菱形,使點軸負半軸上,點在第二象限內(nèi),求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點,E是AD的中點過點A作AFBC交BE的延長線于點F

1求證:AEFDEB

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一塊長為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設(shè)道路寬為x m根據(jù)題意可列出方程為______________________________

【答案】(22-x)(17-x)=300(或x2-39x+74=0)

【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個長方形,根據(jù)長方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x=300,故答案為:(22﹣x)(17﹣x=300

考點:由實際問題抽象出一元二次方程.

型】填空
結(jié)束】
17

【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個根,則此方程的另一個根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1) 2.

【答案】1x1 =1 ,x2= (2) x1 =-1,x2= .

【解析】試題分析:

根據(jù)兩方程的特點,使用“因式分解法”解兩方程即可.

試題解析

1)原方程可化為: ,

方程左邊分解因式得

,

解得 , .

2)原方程可化為: ,即,

,

解得 .

型】解答
結(jié)束】
20

【題目】已知x1,x2是關(guān)于x的一元二次方程x22(m1)xm250的兩實根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示8×7的正方形網(wǎng)格中,A2,0),B3,2),C42),請按要求解答下列問題:

1)將△ABO向右平移4個單位長度得到△A1B1O1,請畫出△A1B1O1并寫出點A1的坐標(biāo);

2)將△ABO繞點C4,2)順時針旋轉(zhuǎn)90°得到△A2B2O2,請畫出△A2B2O2并寫出點A2的坐標(biāo);

3)將△A1B1O1繞點Q旋轉(zhuǎn)90°可以和△A2B2O2完全重合,請直接寫出點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案