精英家教網(wǎng)如圖,已知△ABC是等腰直角三角形,BC為斜邊,若AP=3,將△ABP繞點A逆時針旋轉(zhuǎn)后能與△ACP′重合,求PP′的長.
分析:根據(jù)旋轉(zhuǎn)前后的圖形全等,即可發(fā)現(xiàn)等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì),進行計算即可.
解答:解:∵△ACP′是由△ABP繞點A逆時針旋轉(zhuǎn)后得到的,
∴△ACP′≌△ABP,
∴AP=AP′,∠BAP=∠CAP′.
∵∠BAC=90°,
∴∠PAP′=90°.
∵AP=3,
∴AP′=3,
∴PP′=
32+32
=3
2
點評:此題主要考查學生對旋轉(zhuǎn)及等腰三角形的性質(zhì)的掌握情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案