在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C點為圓心,r為半徑所作的圓與斜邊AB只有一個公共點,則r的取值范圍是 .
【答案】
分析:此題注意兩種情況:
(1)圓與AB相切時;
(2)點A在圓內部,點B在圓上或圓外時.
根據勾股定理以及直角三角形的面積計算出其斜邊上的高,再根據位置關系與數量之間的聯(lián)系進行求解.
解答:解:如圖,∵BC>AC,
∴以C為圓心,r為半徑所作的圓與斜邊AB只有一個公共點.
根據勾股定理求得AB=5.
分兩種情況:
(1)圓與AB相切時,即r=CD=3×4÷5=2.4;
(2)點A在圓內部,點B在圓上或圓外時,此時AC<r≤BC,即3<r≤4.
∴3<r≤4或r=2.4.
點評:本題利用的知識點:勾股定理和垂線段最短的定理;直角三角形的面積公式求解;直線與圓的位置關系與數量之間的聯(lián)系.