(本題滿分10分)
情境觀察
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分
別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等
腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為
P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸
如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
見解析
【解析】
情境觀察
AD(或A′D),90 ------------------------------------------2分
問題探究
結(jié)論:EP=FQ.
證明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.
∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.
∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.
同理AG=FQ. ∴EP=FQ. -----------------------------------6分
拓展延伸
結(jié)論: HE=HF. ------------------------------------------7分
理由:過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
∵四邊形ABME是矩形,∴∠BAE=90°,
∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .
同理△ACG∽△FAQ,∴ = .
∵AB= k AE,AC= k AF,∴ = = k,∴ = . ∴EP=FQ.
∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH. ∴HE=HF ------------10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省鹽城市九年級下學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題
(本題滿分10分)如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路. 現(xiàn)新修一條路AC到公路l. 小明測量出∠ACD=30º,∠ABD=45º,BC=50m. 請你幫小明計算他家到公路l的距離AD的長度(精確到0.1m;參考數(shù)據(jù):,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省海陵區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分10分)如圖,BD是直徑,過⊙O上一點A作⊙O切線交DB延長線于P,過B點作BC∥PA交⊙O于C,連接AB、AC ,
1.(1)求證:AB = AC
2.(2)若PA= 10 ,PB = 5 ,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省九年級下學(xué)期3月考數(shù)學(xué)卷 題型:解答題
(本題滿分10分)如圖,已知二次函數(shù)的圖象的頂點為.二次函數(shù)的圖象與軸交于原點及另一點,它的頂點在函數(shù)的圖象的對稱軸上.
(1)求點與點的坐標(biāo);
(2)當(dāng)四邊形為菱形時,求函數(shù)的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com