【題目】已知等邊ABC的重心為G,DEFABC關(guān)于點(diǎn)G成中心對稱,將它們重疊部分的面積記作S1,ABC的面積記作S2,那么的值是_____

【答案】

【解析】

如圖,根據(jù)點(diǎn)G是等邊ABC的重心,得到AD垂直平分BC,AD是∠BAC的角平分線,根據(jù)中心對稱的性質(zhì)得到DEF≌△ABC,AGDG,EFBC,推出AQH是等邊三角形,得到AQHQAH,求得它們重疊部分為邊長=QH的正六邊形,設(shè)AB3a,則QHa,根據(jù)等邊三角形的面積即可得到結(jié)論.

解:如圖,

∵點(diǎn)G是等邊ABC的重心,

AD垂直平分BCAD是∠BAC的角平分線,

AG2GN,

設(shè)AB3a,則AN×3aa

∵△DEFABC關(guān)于點(diǎn)G成中心對稱,

∴△DEF≌△ABC,AGDGEFBC,

∴∠AQH=∠ABC=∠AHQ=∠ACB60°,

∴△AQH是等邊三角形,

AQHQAHABa

APa

∴它們重疊部分為邊長=QH的正六邊形,

S1S2 ,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形ABC,ADBC邊中線,PBC上一動(dòng)點(diǎn),過點(diǎn)PAD的平行線,交直線AB或延長線于點(diǎn)Q,交CA或延長線于點(diǎn)R

1)當(dāng)點(diǎn)PBD上運(yùn)動(dòng)時(shí),過點(diǎn)QBC的平行線交ADE點(diǎn),交ACF點(diǎn),求證:QEEF;

2)當(dāng)點(diǎn)PBC上運(yùn)動(dòng)時(shí),求證:PQ+PR為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx22x+m的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,直線AC交二次函數(shù)圖象的對稱軸于點(diǎn)D,若點(diǎn)CAD的中點(diǎn).

1)求m的值;

2)若二次函數(shù)圖象上有一點(diǎn)Q,使得tanABQ3,求點(diǎn)Q的坐標(biāo);

3)對于(2)中的Q點(diǎn),在二次函數(shù)圖象上是否存在點(diǎn)P,使得△QBP∽△COA?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中:①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減小;⑤2ab0;⑥b24ac0.下列結(jié)論一定成立的是(

A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸交于點(diǎn)B1,以OB1為邊長作等邊△A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊△A2A1B2,過點(diǎn)A2A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊△A3A2B3,…,則點(diǎn)A2 018的橫坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線yx2+bx+c經(jīng)過點(diǎn)A(﹣40)和B2,6),其頂點(diǎn)為D

1)求此拋物線的表達(dá)式;

2)求ABD的面積;

3)設(shè)C為該拋物線上一點(diǎn),且位于第二象限,過點(diǎn)CCHx軸,垂足為點(diǎn)H,如果OCHABD相似,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBF,AC平分BAE,且交BF于點(diǎn)C,BD平分ABF,且交AE于點(diǎn)D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提高學(xué)生身體素質(zhì),決定開展足球、籃球、臺(tái)球、乒乓球四項(xiàng)課外體育活動(dòng),并要求學(xué)生必須并且只能選擇一項(xiàng).為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖回答下列問題.(要求寫出簡要的解答過程)

(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該學(xué)??cè)藬?shù)是1300人,請估計(jì)選擇籃球項(xiàng)目的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,點(diǎn)、分別在邊、上,根據(jù)下列給定的條件,不能判斷平行的是( )

A. AD=6,BD=4,AE=2.4,CE=1.6

B. BD=2,AB=6,CE=1,AC=3;

C. AD=4,AB=6,DE=2,BC=3;

D. AD=4,AB=6,AE=2,AC=3.

查看答案和解析>>

同步練習(xí)冊答案