如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,
(1)求過(guò)E點(diǎn)的反比例函數(shù)解析式;
(2)求折痕AD的解析式.
分析:(1)先根據(jù)勾股定理求出BE的長(zhǎng),進(jìn)而可得出CE的長(zhǎng),求出E點(diǎn)坐標(biāo),代入反比例函數(shù)的一般形式求其解析式即可;
(2)在Rt△DCE中,由DE=OD及勾股定理可求出OD的長(zhǎng),進(jìn)而得出D點(diǎn)坐標(biāo),利用待定系數(shù)法求得AD所在直線的解析式即可.
解答:解:(1)依題意可知,折痕AD是四邊形OAED的對(duì)稱(chēng)軸,
∴在Rt△ABE中,AE=AO=10,AB=8,BE=
AE2-AB2
=
102-82
=6,
∴CE=4,
∴E(4,8),
設(shè)過(guò)E點(diǎn)的反比例函數(shù)的解析式為y=
k
x
,
∴k=4×8=32,
∴過(guò)E點(diǎn)的反比例函數(shù)的解析式為y=
32
x
;

(2)在Rt△DCE中,DC2+CE2=DE2,
又∵DE=OD,
∴(8-OD)2+42=OD2,
∴OD=5,
∴D(0,5).
∵OA=10,
∴點(diǎn)A的坐標(biāo)為(10,0),
設(shè)折痕AD所在直線的解析式為y=kx+b,
10k+b=0
b=5
,
解得k=-0.5,b=5,
∴折痕AD的解析式y(tǒng)=-0.5x+5.
點(diǎn)評(píng):本題主要考查了反比例函數(shù)的綜合知識(shí),熟知折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=9,OC=15,將矩形紙片OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到矩形OA1B1C1.將矩形OA1B1C1折疊,使得點(diǎn)B1落在x軸上,并與x軸上的點(diǎn)B2重合,折痕為A1D.
(1)求點(diǎn)B2的坐標(biāo);
(2)求折痕A1D所在直線的解析式;
(3)在x軸上是否存在點(diǎn)P,使得∠BPB1為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA、OC是方程
2
x
=
9-x
10
的兩個(gè)根(OA>OC),在AB邊上取一點(diǎn)D,將紙片沿CD翻折,使點(diǎn)B恰好落在OA邊上的點(diǎn)E處.
(1)求OA、OC的長(zhǎng);
(2)求D、E兩點(diǎn)的坐標(biāo);
(3)若線段CE上有一動(dòng)點(diǎn)P自C點(diǎn)沿CE方向向E點(diǎn)勻速運(yùn)動(dòng)(點(diǎn)P運(yùn)動(dòng)到點(diǎn)E后停止運(yùn)動(dòng)),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,過(guò)P點(diǎn)作ED的平行線交CD于點(diǎn)M.是否存在這樣的t 值,使以C、E、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫(xiě)出t值及相應(yīng)的時(shí)刻點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的長(zhǎng)方形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處.
(1)求過(guò)E點(diǎn)的反比例函數(shù)解析式.
(2)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案